首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6301篇
  免费   488篇
  国内免费   2篇
  6791篇
  2023年   31篇
  2022年   92篇
  2021年   157篇
  2020年   106篇
  2019年   126篇
  2018年   159篇
  2017年   140篇
  2016年   224篇
  2015年   329篇
  2014年   328篇
  2013年   554篇
  2012年   562篇
  2011年   498篇
  2010年   332篇
  2009年   254篇
  2008年   400篇
  2007年   395篇
  2006年   362篇
  2005年   267篇
  2004年   276篇
  2003年   262篇
  2002年   236篇
  2001年   48篇
  2000年   34篇
  1999年   55篇
  1998年   57篇
  1997年   51篇
  1996年   46篇
  1995年   29篇
  1994年   40篇
  1993年   42篇
  1992年   27篇
  1991年   21篇
  1990年   22篇
  1989年   13篇
  1988年   14篇
  1987年   16篇
  1986年   12篇
  1985年   10篇
  1984年   18篇
  1983年   15篇
  1982年   18篇
  1981年   17篇
  1979年   7篇
  1978年   13篇
  1977年   8篇
  1974年   7篇
  1973年   7篇
  1972年   7篇
  1970年   7篇
排序方式: 共有6791条查询结果,搜索用时 24 毫秒
31.
32.
Monomeric and dimeric PufX-containing core complexes have been purified from membranes of wild-type Rhodobacter sphaeroides. Reconstitution of both samples by detergent removal in the presence of lipids leads to the formation of two-dimensional crystals constituted of dimeric core complexes. Two-dimensional crystals were further analyzed by cryoelectron microscopy and atomic force microscopy. A projection map at 26-A resolution reveals that core complexes assemble in an "S"-shaped dimeric complex. Each core complex is composed of one reaction center, 12 light-harvesting 1 alpha/beta-heterodimers, and one PufX protein. The light-harvesting 1 assemblies are open with a gap of density of approximately 30-A width and surround oriented reaction centers. A maximum density is found at the dimer junction. Based on the projection map, a model is proposed, in which the two PufX proteins are located at the dimer junction, consistent with the finding of dimerization of monomeric core complexes upon reconstitution. This localization of PufX in the core complex implies that PufX is the structural key for the dimer complex formation rather than a channel-forming protein for the exchange of ubiquinone/ubiquinol between the reaction center and the cytochrome bc1 complex.  相似文献   
33.
Quantifying patterns of fine root dynamics is crucial to the understanding of ecosystem structure and function, and in predicting how ecosystems respond to disturbance. Part of this understanding involves consideration of the carbon lost through root turnover. In the context of the rainfall pattern in the tropics, it was hypothesised that rainfall would strongly influence fine root biomass and longevity. A field study was conducted to determine root biomass, elemental composition and the influence of rainfall on longevity of fine roots in a tropical lowland evergreen rainforest at Danum Valley, Sabah, Malaysia. A combination of root coring, elemental analysis and rhizotron observation methods were used. Fine (less than 2 mm diameter) root biomass was relatively low (1700 kg ha −1) compared with previously described rainforest data. Standing root biomass was positively correlated with preceding rainfall, and the low fine root biomass in the dry season contained higher concentrations of N and lower concentrations of P and K than at other times. Observations on rhizotrons demonstrated that the decrease in fine root biomass in the dry season was a product of both a decrease in fine root length appearance and an increase in fine root length disappearance. Fitting an overall model to root survival time showed significant effects of rainfall preceding root disappearance, with the hazard of root disappearance decreasing by 8 for each 1 mm increase in the average daily (30 day) rainfall preceding root disappearance. While it is acknowledged that other factors have a part to play, this work demonstrates the importance of rainfall and soil moisture in influencing root biomass and root disappearance in this tropical rainforest.  相似文献   
34.
Although acetylated α-tubulin is known to be a marker of stable microtubules in neurons, precise factors that regulate α-tubulin acetylation are, to date, largely unknown. Therefore, a genetic screen was employed in the nematode Caenorhabditis elegans that identified the Elongator complex as a possible regulator of α-tubulin acetylation. Detailed characterization of mutant animals revealed that the acetyltransferase activity of the Elongator is indeed required for correct acetylation of microtubules and for neuronal development. Moreover, the velocity of vesicles on microtubules was affected by mutations in Elongator. Elongator mutants also displayed defects in neurotransmitter levels. Furthermore, acetylation of α-tubulin was shown to act as a novel signal for the fine-tuning of microtubules dynamics by modulating α-tubulin turnover, which in turn affected neuronal shape. Given that mutations in the acetyltransferase subunit of the Elongator (Elp3) and in a scaffold subunit (Elp1) have previously been linked to human neurodegenerative diseases, namely Amyotrophic Lateral Sclerosis and Familial Dysautonomia respectively highlights the importance of this work and offers new insights to understand their etiology.  相似文献   
35.
Randomly amplified polymorphic DNA analysis using primer 239 (5′ CTGAAGCGGA 3′) was performed to characterize Leuconostoc sp. strains. All the strains of Leuconostoc mesenteroides subsp. mesenteroides (with the exception of two strains), two strains formerly identified as L. gelidum, and one strain of Leuconostoc showed a common band at about 1.1 kb. This DNA fragment was cloned and sequenced in order to verify its suitability for identifying L. mesenteroides subsp. mesenteroides strains.  相似文献   
36.
37.
The swelling-activated chloride current (I Cl,Vol) is abundantly expressed in glioblastoma (GBM) cells, where it controls cell volume and invasive migration. The transduction pathway mediating I Cl,Vol activation in GBM cells is, however, poorly understood. By means of pharmacological and electrophysiological approaches, on GL-15 human GBM cells we found that I Cl,Vol activation by hypotonic swelling required the activity of a U73122-sensitive phospholipase C (PLC). I Cl,Vol activation could also be induced by the membrane-permeable diacylglycerol (DAG) analog OAG. In contrast, neither calcium (Ca2+) chelation by BAPTA-AM nor changes in PKC activity were able to affect I Cl,Vol activation by hypotonic swelling. We further found that R59022, an inhibitor of diacylglycerol kinase (DGK), reverted I Cl,Vol activation, suggesting the involvement of phosphatidic acid. In addition, I Cl,Vol activation required the activity of a EHT1864-sensitive Rac1 small GTPase and the resulting actin polymerization, as I Cl,Vol activation was prevented by cytochalasin B. We finally show that I Cl,Vol can be activated by the promigratory fetal calf serum in a PLC- and DGK-dependent manner. This observation is potentially relevant because blood serum can likely come in contact with glioblastoma cells in vivo as a result of the tumor-related partial breakdown of the blood–brain barrier. Given the relevance of I Cl,Vol in GBM cell volume regulation and invasiveness, the several key signaling molecules found in this study to be involved in the activation of the I Cl,Vol may represent potential therapeutic targets against this lethal cancer.  相似文献   
38.
The continuous introduction of new antineoplastic drugs and their use as complex mixture emphasize the need to carry out correct health risk assessment. The aim of this study was to evaluate genotoxic effects of antineoplastic drugs in nurses (n=25) and pharmacy technicians (n=5) employed in an oncology hospital. The nurses administered antineoplastic drugs in the day-care hospital (n=12) and in the wards (n=13), and pharmacy technicians prepared the drugs in the central pharmacy. We performed the micronucleus (MN) test with lymphocytes and exfoliated buccal cells and conducted traditional analysis of chromosomal aberrations (CA). Thirty healthy subjects were selected as controls. Monitoring of surface contamination with cyclophosphamide, 5-fluorouracil, ifosfamide, cytarabine, and gemcitabine showed the presence of detectable levels only for cyclophosphamide, 5-fluorouracil and ifosfamide. In addition, we measured the 5-fluorouracil metabolite alpha-F-betaalanine in the urine of all subjects and found significant concentrations only in 3 out of 25 nurses. The micronucleus assay with lymphocytes did not show significant differences between exposed and control groups, while the same test with exfoliated buccal cells found higher values in nurses administering antineoplastic drugs than in pharmacy employees. In the CA analysis, we detected in exposed groups a significant increase (about 2.5-fold) of structural CA, particularly breaks (up to 5.0-fold). Our results confirm the genotoxic effect of antineoplastic drugs in circulating blood lymphocytes. Moreover, in exfoliated buccal cells the data show more consistent genetic damage induced during administration of the antineoplastic drugs than during their preparation. The data also stress the use of this non-invasive sampling, to assess occupational exposure to mixture of chemicals at low doses.  相似文献   
39.
The vascular endothelial growth factor (VEGF) tyrosine kinase receptors KDR and Flt-1 are targets of current interest in anticancer drug research. PTK787/ZK222584 is a potent inhibitor of these enzymes in clinical evaluation as an antiangiogenic agent. The development of a hypothesis concerning the bioactive conformation of this compound has led to the discovery of a new class of potent inhibitors of KDR and Flt-1, the anthranilamides. This could be achieved with a limited experimental effort, which only involved the testing of one archive compound and the synthesis and testing of one appropriate analogue.  相似文献   
40.
Endothelial Cell Dysfunction (ECD) is a recognized harbinger of a host of chronic cardiovascular diseases. Using a mouse model of ECD triggered by treatment with L-Nω-methylarginine (L-NMMA), we previously demonstrated that renal microvasculature displays a perturbed protein profile, including diminished expression of two key enzymes of the Krebs cycle associated with a Warburg-type suppression of mitochondrial metabolism. We hypothesized that supplementation with L-glutamine (GLN), that can enter the Krebs cycle downstream this enzymatic bottleneck, would normalize vascular function and alleviate mitochondrial dysfunction. To test this hypothesis, mice with chronic L-NMMA-induced ECD were co-treated with GLN at different concentrations for 2 months. Results confirmed that L-NMMA led to a defect in acetylcholine-induced relaxation of aortic rings that was dose-dependently prevented by GLN. In caveolin-1 transgenic mice characterized by eNOS inactivation, L-NMMA further impaired vasorelaxation which was partially rescued by GLN co-treatment. Pro-inflammatory profile induced by L-NMMA was blunted in mice co-treated with GLN. Using an LC/MS platform for metabolite profiling, we sought to identify metabolic perturbations associated with ECD and offset by GLN supplementation. 3453 plasma molecules could be detected with 100% frequency in mice from at least one treatment group. Among these, 37 were found to be differentially expressed in a 4-way comparison of control vs. LNMMA both with and without GLN. One of such molecules, hippuric acid, an “uremic toxin” was found to be elevated in our non-uremic mice receiving L-NMMA, but normalized by treatment with GLN. Ex vivo analysis of hippuric acid effects on vasomotion demonstrated that it significantly reduced acetylcholine-induced vasorelaxation of vascular rings. In conclusion, functional and metabolic profiling of animals with early ECD revealed macrovasculopathy and that supplementation GLN is capable of improving vascular function. Metabolomic analyses reveal elevation of hippuric acid, which may further exacerbate vasculopathy even before the development of uremia.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号