首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6329篇
  免费   486篇
  国内免费   2篇
  6817篇
  2023年   31篇
  2022年   92篇
  2021年   157篇
  2020年   106篇
  2019年   126篇
  2018年   159篇
  2017年   140篇
  2016年   224篇
  2015年   330篇
  2014年   330篇
  2013年   554篇
  2012年   563篇
  2011年   502篇
  2010年   333篇
  2009年   256篇
  2008年   402篇
  2007年   397篇
  2006年   365篇
  2005年   269篇
  2004年   278篇
  2003年   263篇
  2002年   237篇
  2001年   49篇
  2000年   34篇
  1999年   55篇
  1998年   57篇
  1997年   51篇
  1996年   45篇
  1995年   29篇
  1994年   40篇
  1993年   42篇
  1992年   27篇
  1991年   23篇
  1990年   23篇
  1989年   16篇
  1988年   14篇
  1987年   17篇
  1986年   12篇
  1985年   11篇
  1984年   18篇
  1983年   15篇
  1982年   18篇
  1981年   18篇
  1980年   7篇
  1978年   13篇
  1977年   8篇
  1976年   6篇
  1974年   7篇
  1973年   7篇
  1972年   6篇
排序方式: 共有6817条查询结果,搜索用时 10 毫秒
971.
Cystinosis is a rare disease caused by homozygous mutations of the CTNS gene, encoding a cystine efflux channel in the lysosomal membrane. In Ctns knockout mice, the pathologic intralysosomal accumulation of cystine that drives progressive organ damage can be reversed by infusion of wildtype bone marrow-derived stem cells, but the mechanism involved is unclear since the exogeneous stem cells are rarely integrated into renal tubules. Here we show that human mesenchymal stem cells, from amniotic fluid or bone marrow, reduce pathologic cystine accumulation in co-cultured CTNS mutant fibroblasts or proximal tubular cells from cystinosis patients. This paracrine effect is associated with release into the culture medium of stem cell microvesicles (100-400 nm diameter) containing wildtype cystinosin protein and CTNS mRNA. Isolated stem cell microvesicles reduce target cell cystine accumulation in a dose-dependent, Annexin V-sensitive manner. Microvesicles from stem cells expressing CTNS(Red) transfer tagged CTNS protein to the lysosome/endosome compartment of cystinotic fibroblasts. Our observations suggest that exogenous stem cells may reprogram the biology of mutant tissues by direct microvesicle transfer of membrane-associated wildtype molecules.  相似文献   
972.
The suggested location of broadleaved evergreen trees in Europe during the last full-glacial has traditionally favoured a southerly refugial model, which proposes survival in the Mediterranean peninsulas and recolonization of central and northern Europe during the Holocene. This hypothesis is not always substantiated by thorough reviews of original past and modern occurrence data, or considered in the light of plant traits and autoecology. Our approach focuses on the genus Buxus with the aim of exploring (i) the relationship between the location of refugia and post-glacial population dynamics, (ii) past processes determining density, fragmentation and local extinctions of modern populations, and (iii) the vulnerability of Buxus in the context of the undergoing environmental changes. We compiled a database of over 3600 modern occurrences and 676 fossil sites to reconstruct the distribution of Buxus in Europe since 30 ka cal BP. The location of fossil finds and the plant traits of Buxus indicate that it persisted widely across its modern distribution through the last glacial period with modes varying from region to region. The E Pyrenees, W Alps, and Jura Mts hosted dense populations, which expanded exponentially during the whole Holocene, and resulted in a modern continuous distribution area. In contrast, the Mediterranean Peninsulas hosted sparse populations, which increased exponentially only during the first half of the Holocene, clearly decreased in the last 4.5 ka BP and resulted in a highly fragmented modern distribution area, most likely in relation to the climate trends towards dry conditions of the last few millennia. These results challenge the common view that the Mediterranean regions are the exclusive and most important refuge areas for evergreen broadleaved trees and stress the importance of considering long-term population dynamics based on fossil data to evaluate the vulnerability of modern fragmented plant populations in view of conservation actions.  相似文献   
973.
Background aimsWe have recently shown that thymoglobulin (TG) efficiently expands cytokine-induced killer (CIK) cells in combination with interferon (IFN)-γ and interleukin (IL)-2 (ITG2 protocol). It is presently unknown whether the infusion of autologous immune effector cells generated by TG, IFN-γ and IL-2 is feasible and safeMethodsFive patients with advanced and/or refractory solid tumors were enrolled in the present phase I/II study. Peripheral blood mononuclear cells (PBMC) collected by leukapheresis were stimulated under good manufacturing practice (GMP)-conditions with IFN-γ, followed by TG and IL-2. After 2–3 weeks in culture, a median of 4.65 × 106 immune effector cells per kilogram of recipient's body weight was obtained and infused intravenously. The median time from enrollment into the study to infusion of the expanded CIK cells was 30 daysResultsITG2 efficiently expanded immune effector cells that comprised both conventional natural killer (NK) cells and CD3+ CD16+ CD56+ CIK cells. One patient with advanced melanoma died because of disease progression before the infusion of CIK cells. The target dose of at least 2.5 × 106 CIK cells/kg of recipient's body weight was reached in four out of five evaluable patients. CIK cells were administered intravenously without any measurable toxicity. In vitro, CIK cells exerted lytic activity against cervical cancer cells. The median survival was 4.5 months (range 1–13) from the first infusion of CIK cells.ConclusionsThis study has highlighted the feasibility and safety of the administration of CIK cells generated with the ITG2 protocol. Whether CIK cells can help control disease burden in patients with advanced malignancies will be determined in future clinical trials.  相似文献   
974.
A general paradigm to understand protein function is to look at properties of isolated well conserved domains, such as SH3 or PDZ domains. While common features of domain families are well understood, the role of subtle differences among members of these families is less clear. Here, molecular dynamics simulations indicate that the binding mechanism in PSD95-PDZ3 is critically regulated via interactions outside the canonical binding site, involving both the poorly conserved loop and an extra-domain helix. Using the CRIPT peptide as a prototypical ligand, our simulations suggest that a network of salt-bridges between the ligand and this loop is necessary for binding. These contacts interconvert between each other on a time scale of a few tens of nanoseconds, making them elusive to X-ray crystallography. The loop is stabilized by an extra-domain helix. The latter influences the global dynamics of the domain, considerably increasing binding affinity. We found that two key contacts between the helix and the domain, one involving the loop, provide an atomistic interpretation of the increased affinity. Our analysis indicates that both extra-domain segments and loosely conserved regions play critical roles in PDZ binding affinity and specificity.  相似文献   
975.
Tight regulation of the visual response is essential for photoreceptor function and survival. Visual response dysregulation often leads to photoreceptor cell degeneration, but the causes of such cell death are not well understood. In this study, we investigated a fatty acid transport protein (fatp) null mutation that caused adult-onset and progressive photoreceptor cell death. Consistent with fatp having a role in the retina, we showed that fatp is expressed in adult photoreceptors and accessory cells and that its re-expression in photoreceptors rescued photoreceptor viability in fatp mutants. The visual response in young fatp-mutant flies was abnormal with elevated electroretinogram amplitudes associated with high levels of Rhodopsin-1 (Rh1). Reducing Rh1 levels in rh1 mutants or depriving flies of vitamin A rescued photoreceptor cell death in fatp mutant flies. Our results indicate that fatp promotes photoreceptor survival by regulating Rh1 abundance.  相似文献   
976.
There is a need for a tool to assess dietary intake related to the habitual dietary glycaemic index (GI) and fibre in groups with large numbers of individuals. Novel metabolite-profiling techniques may be a useful approach when applied to human urine. In a long-term, controlled dietary intervention study, metabolomics were applied to assess dietary patterns. A targeted approach was used to evaluate the effects on urinary C-peptide excretion caused by the dietary treatments. Seventy-seven overweight subjects followed an 8-week low-calorie diet (LCD) and were then randomly assigned to a high-GI or low-GI diet for 6 month during which they completed 24-h urine collections at baseline (prior to the 8-week LCD) and after randomisation to the dietary intervention, at month 1, 3 and 6, respectively. Metabolite profiling in 24-h urine was performed by 1H NMR and chemometrics. Partial least squares (PLS) analysis indicated that urinary formate could discriminate between high-GI and low-GI diets (correlation coefficient r = 0.82), and this finding was confirmed statistically (P = 0.01). PLS analysis also indicated that urinary hippurate could be associated with fibre intake, but this finding was not confirmed statistically. No associations between GI and urinary C-peptide were found. Our results emphasise that application of metabolomics is useful in the assessment of dietary exposure related to dietary GI and fibre seen at group level in a nutritional metabolomic study of human urine. As our design allowed for large variations in individually selected food items, biomarkers identified at group level may be interpreted as more general and robust markers, largely not confounded with markers from single dietary factors.  相似文献   
977.
A new set of 5-(2-(pyrrolidin-1-yl)acetamido)-N-butyl-2-(substituted)benzamide and 5-(2-(piperidin-1-yl)acetamido)-N-butyl-2-(substituted) benzamide derivatives were synthesized in which as structural features the 2-(1-pyrrolidinyl)- or 2-(1-piperidyl)acetylamino group or a diphenylether moiety are associated to a benzamide scaffold. Their binding affinity for human PrP(C) and inhibition of its conversion into PrP(Sc) were determined in vitro; moreover, the antiprion activity was assayed by inhibition of PrP(Sc) accumulation in scrapie-infected mouse neuroblastoma cells (ScN2a) and scrapie mouse brain (SMB) cells. The results clearly indicate the benzamide derivatives as attractive lead compounds for the development of potential therapeutic agents against prion disease.  相似文献   
978.
In the past decade among the main developments in the field of bionanotechnology is the application of proteins in devices. Research focuses on the modification of enzyme systems by means of chemical and physical tools in order to achieve full control of their function and to employ them for specific tasks. Membrane protein channels are intriguing biological devices as they allow the recognition and passage of a variety of macromolecules through an otherwise impermeable lipid bilayer. Hence, membrane proteins can be used as sensory devices for detection or as molecular nanovalves to allow for the controlled release of molecules. Here, we discuss the structure and function of three different channel proteins that mediate the membrane passage of macromolecules using different mechanisms. These systems are described in a comparative manner and an overview is provided of the technological advances in employing these proteins in external (or human) controllable devices.  相似文献   
979.
980.
Methamphetamine abuse is toxic to dopaminergic neurons, causing nigrostriatal denervation and striatal dopamine loss. Following methamphetamine exposure, the number of nigral cell bodies is generally preserved, but their cytoplasm features autophagic-like vacuolization and cytoplasmic accumulation of α-synuclein-, ubiquitin- and parkin-positive inclusion-like bodies. Whether autophagy is epiphenomenal or it plays a role in the mechanism of methamphetamine toxicity and, in the latter case, whether its role consists of counteracting or promoting the neurotoxic effect remains obscure. We investigated the signaling pathway and the significance (protective vs . toxic) of autophagy activation and the convergence of the autophagic and the ubiquitin-proteasome pathways at the level of the same intracellular bodies in a simple cell model of methamphetamine toxicity. We show that autophagy is rapidly up-regulated in response to methamphetamine. Confocal fluorescence microscopy and immuno-electron microscopy studies demonstrated the presence of α-synuclein aggregates in autophagy-lysosomal structures in cells exposed to methamphetamine, a condition compatible with cell survival. Inhibition of autophagy either by pharmacologic or genetic manipulation of the class III Phosphatidylinositol-3 kinase-mediated signaling prevented the removal of α-synuclein aggregates and precipitated a bax-mediated mitochondrial apoptosis pathway.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号