首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6300篇
  免费   488篇
  国内免费   2篇
  6790篇
  2023年   31篇
  2022年   92篇
  2021年   158篇
  2020年   106篇
  2019年   126篇
  2018年   160篇
  2017年   140篇
  2016年   224篇
  2015年   329篇
  2014年   328篇
  2013年   554篇
  2012年   563篇
  2011年   498篇
  2010年   332篇
  2009年   254篇
  2008年   400篇
  2007年   395篇
  2006年   362篇
  2005年   267篇
  2004年   276篇
  2003年   262篇
  2002年   236篇
  2001年   48篇
  2000年   34篇
  1999年   55篇
  1998年   57篇
  1997年   51篇
  1996年   45篇
  1995年   30篇
  1994年   40篇
  1993年   42篇
  1992年   27篇
  1991年   22篇
  1990年   22篇
  1989年   13篇
  1988年   14篇
  1987年   16篇
  1986年   12篇
  1985年   10篇
  1984年   18篇
  1983年   15篇
  1982年   18篇
  1981年   17篇
  1980年   7篇
  1978年   13篇
  1977年   8篇
  1976年   6篇
  1974年   7篇
  1973年   8篇
  1972年   6篇
排序方式: 共有6790条查询结果,搜索用时 0 毫秒
41.
The analysis of replication intermediates of a Kluyveromyces lactis chromosomal autonomous replicating sequence (ARS), KARS101, has shown that it is active as a chromosomal replicator. KARS101 contains a 50 bp sequence conserved in two other K. lactis ARS elements. The deletion of the conserved sequence in KARS101 completely abolished replicator activity, in both the plasmids and the chromosome. Gel shift assays indicated that this sequence binds proteins present in K. lactis nuclear extracts, and a 40 bp sequence, previously defined as the core essential for K. lactis ARS function, is required for efficient binding. Reminiscent of the origin replication complex (ORC), the binding appears to be ATP dependent. A similar pattern of protection of the core was seen with in vitro footprinting. KARS101 also functions as an ARS sequence in Saccharomyces cerevisiae. A comparative study using S. cerevisiae nuclear extracts revealed that the sequence required for binding is a dodecanucleotide related to the S. cerevisiae ARS consensus sequence and essential for S. cerevisiae ARS activity.  相似文献   
42.
43.
Ventriglia F 《Bio Systems》2011,104(1):14-22
Mathematical models of the excitatory synapse are furnishing valuable information about the synaptic response. Based on Brownian-diffusion of glutamate molecules, a synapse model was utilized to investigate the synaptic response on a femto-second time scale by the use of a parallel computer. In particular, the presence of fibrils crossing the synaptic cleft was simulated, which could have a role in shaping the brain activity. To this aim the model of synapse was modified by considering trans-synaptic filaments with diameters ranging from 7 nm to 3 nm, disposed on a grid with spacing of 14 nm or 8 nm. The simulation demonstrated that the presence of filaments induced an increase in the synaptic response, most likely linked to an increment in the probability of encounter between glutamate molecules and receptors. The increase was small - from 5 to 20%, but metabolic and functional considerations provide substantive hints about the importance of these small changes for brain activity. Moreover, it was shown that the presence of filaments made more stable the response of the synapse to random variations of pre-synaptic elements. Originated by these computational results, some inferences about the biological bases of mind diseases such as autism, mental retardation and schizophrenia, are reported in the Discussion.  相似文献   
44.
The vascular endothelial growth factor (VEGF) tyrosine kinase receptors KDR and Flt-1 are targets of current interest in anticancer drug research. PTK787/ZK222584 is a potent inhibitor of these enzymes in clinical evaluation as an antiangiogenic agent. The development of a hypothesis concerning the bioactive conformation of this compound has led to the discovery of a new class of potent inhibitors of KDR and Flt-1, the anthranilamides. This could be achieved with a limited experimental effort, which only involved the testing of one archive compound and the synthesis and testing of one appropriate analogue.  相似文献   
45.
Recently developed proteomic technologies allow to profile thousands of proteins within a high-throughput approach towards biomarker discovery, although results are not as satisfactory as expected. In the present study we demonstrate that serum proteome denaturation is a key underestimated feature; in fact, a new differential denaturation protocol better discriminates serum proteins according to their electrophoretic mobility as compared to single-denaturation protocols. Sixty nine different denaturation treatments were tested and the 3 most discriminating ones were selected (TRIDENT analysis) and applied to human sera, showing a significant improvement of serum protein discrimination as confirmed by MALDI-TOF/MS and LC-MS/MS identification, depending on the type of denaturation applied. Thereafter sera from mice and patients carrying cutaneous melanoma were analyzed through TRIDENT. Nine and 8 protein bands were found differentially expressed in mice and human melanoma sera, compared to healthy controls (p<0.05); three of them were found, for the first time, significantly modulated: α2macroglobulin (down-regulated in melanoma, p<0.001), Apolipoprotein-E and Apolipoprotein-A1 (both up-regulated in melanoma, p<0.04), both in mice and humans. The modulation was confirmed by immunological methods. Other less abundant proteins (e.g. gelsolin) were found significantly modulated (p<0.05).Conclusions: i) serum proteome contains a large amount of information, still neglected, related to proteins folding; ii) a careful serum denaturation may significantly improve analytical procedures involving complex protein mixtures; iii) serum differential denaturation protocol highlights interesting proteomic differences between cancer and healthy sera.  相似文献   
46.
47.
Di Francesco  A.  Di Foggia  M.  Corbetta  M.  Baldo  D.  Ratti  C.  Baraldi  E. 《Journal of Plant Growth Regulation》2021,40(3):1233-1244

The most common leguminous plants’ diseases are caused by soil-borne pathogens leading to important economic losses worldwide. Strains L1 and L8, belonging to Aureobasidium pullulans species, were tested in vitro and in vivo as biocontrol agents (BCAs) against Rhizoctonia solani (Rs1) (AG-4) and as plant growth promoters (PGPs). The non-volatile metabolites produced by L1 and L8 strains inhibited the pathogen mycelial growth by 87.9% on average, with no significant differences between the two strains. The lower pathogen diametric growth inhibition was displayed by both yeasts’ volatile metabolites (VOCs) that significantly reduced the colony growth of R. solani, and similarly to the control, with an average of 10.5%. By in vivo assay, L1 and L8 strains showed the ability to control the pathogen virulence probably through the biofilm formation around the bean and soybean plant roots, as confirmed by scanning electron microscope (SEM) analysis. The spectroscopic analysis highlighted the composition of non-volatile compounds: complex carbohydrates (pullulan), degrading enzymes, siderophores and antifungals (aureobasidins). Moreover, the ability of L1 and L8 strains to stimulate the bean and soybean plant roots, stems, and leaves growth was investigated, showing that these yeasts could have an application not only as BCAs but also as plant growth biostimulator.

  相似文献   
48.
Although acetylated α-tubulin is known to be a marker of stable microtubules in neurons, precise factors that regulate α-tubulin acetylation are, to date, largely unknown. Therefore, a genetic screen was employed in the nematode Caenorhabditis elegans that identified the Elongator complex as a possible regulator of α-tubulin acetylation. Detailed characterization of mutant animals revealed that the acetyltransferase activity of the Elongator is indeed required for correct acetylation of microtubules and for neuronal development. Moreover, the velocity of vesicles on microtubules was affected by mutations in Elongator. Elongator mutants also displayed defects in neurotransmitter levels. Furthermore, acetylation of α-tubulin was shown to act as a novel signal for the fine-tuning of microtubules dynamics by modulating α-tubulin turnover, which in turn affected neuronal shape. Given that mutations in the acetyltransferase subunit of the Elongator (Elp3) and in a scaffold subunit (Elp1) have previously been linked to human neurodegenerative diseases, namely Amyotrophic Lateral Sclerosis and Familial Dysautonomia respectively highlights the importance of this work and offers new insights to understand their etiology.  相似文献   
49.
A convenient synthesis of the pyrano[2,3-e]isoindol-2-one ring system, an heteroanalogue of angelicin, is reported. Our synthetic approach consists of the annelation of the pyran ring on the isoindole moiety using 5-dialkylamino- or 5-hydroxymethylene intermediates as building blocks. The photoantiproliferative activity of the new derivatives was studied. Some of them bearing the benzyl group at the 8 position were active with IC50 in the micromolar range. Cell cytotoxicity involves apoptosis, alteration of cell cycle profile and membrane photodamage.  相似文献   
50.
The dye 10-N-nonyl acridine orange (NAO) is used to label cardiolipin domains in mitochondria and bacteria. The present work represents the first study on the binding of NAO with archaebacterial lipid membranes. By combining absorption and fluorescence spectroscopy with fluorescence microscopy studies, we investigated the interaction of the dye with (a) authentic standards of archaebacterial cardiolipins, phospholipids and sulfoglycolipids; (b) isolated membranes; (c) living cells of a square-shaped extremely halophilic archaeon. Absorption and fluorescence spectroscopy data indicate that the interaction of NAO with archaebacterial cardiolipin analogues is similar to that occurring with diacidic phospholipids and sulfoglycolipids, suggesting as molecular determinants for NAO binding to archaebacterial lipids the presence of two acidic residues or a combination of acidic and carbohydrate residues. In agreement with absorption spectroscopy data, fluorescence data indicate that NAO fluorescence in archaeal membranes cannot be exclusively attributed to bisphosphatidylglycerol and, therefore, different from mitochondria and bacteria, the dye cannot be used as a cardiolipin specific probe in archaeal microorganisms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号