首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5519篇
  免费   432篇
  2023年   31篇
  2022年   70篇
  2021年   149篇
  2020年   69篇
  2019年   118篇
  2018年   137篇
  2017年   129篇
  2016年   197篇
  2015年   307篇
  2014年   339篇
  2013年   437篇
  2012年   516篇
  2011年   493篇
  2010年   303篇
  2009年   250篇
  2008年   339篇
  2007年   356篇
  2006年   315篇
  2005年   260篇
  2004年   247篇
  2003年   227篇
  2002年   201篇
  2001年   36篇
  2000年   24篇
  1999年   36篇
  1998年   48篇
  1997年   25篇
  1996年   30篇
  1995年   24篇
  1994年   18篇
  1993年   15篇
  1992年   38篇
  1991年   18篇
  1990年   15篇
  1989年   9篇
  1988年   13篇
  1987年   8篇
  1986年   12篇
  1985年   10篇
  1983年   5篇
  1982年   7篇
  1981年   7篇
  1980年   7篇
  1979年   7篇
  1978年   5篇
  1977年   4篇
  1969年   4篇
  1968年   6篇
  1966年   6篇
  1965年   5篇
排序方式: 共有5951条查询结果,搜索用时 31 毫秒
951.
Arabidopsis thaliana defective in induced resistance 1 (At-DIR1) has been characterized as a protein responsible for the generation or transmission of the still unknown signal involved in systemic acquired resistance. This acidic apoplastic protein is a member of the family of lipid transfer proteins and was detected in vascular fluids. To our knowledge, no DIR1-like protein has been described in other plant species. Hence, we have performed data mining to identify a putative ortholog of DIR1 in tomato. This strategy allowed the detection of a few gene products displaying sequence similarity to At-DIR1 whose structural features were further analysed in silico. The best match (unigene SGN-327306) encoded a protein with an acidic pI, a peculiar characteristic of DIR1 among lipid transfer proteins, and was hence selected as a putative tomato ortholog of At-DIR1. This sequence, named Le-DIR1, served for the design of a specific antigenic peptide and the generation of polyclonal antibodies. The antiserum anti-Le-DIR1 recognized a peptide of the expected size (7kDa) in phloem sap of tomato plants, hence confirming the existence of the predicted protein in vascular fluids. This result supports the notion of the existence of common systemic acquired resistance (SAR) signaling molecules in different species.  相似文献   
952.
The human cathelicidin LL-37 displays both direct antibacterial activities and the capacity to modulate host-cell activities. These depend on structural characteristics that are subject to positive selection for variation, as observed in a previous analysis of the CAMP gene (encoding LL-37) in primates. The altered balance between cationic and anionic residues in different primate orthologues affects intramolecular salt-bridging and influences the stability of the helical conformation and tendency to aggregate in solution of the peptide. In the present study, we have analysed the effects of these structural variations on membrane interactions for human LL-37, rhesus RL-37 and orang-utan LL-37, using several complementary biophysical and biochemical methods. CD and ATR (attenuated total reflection)-FTIR (Fourier-transform IR) spectroscopy on model membranes indicate that RL-37, which is monomeric and unstructured in bulk solution [F-form (free form)], and human LL-37, which is partly structured and probably aggregated [A-form (aggregated form)], bind biological membranes in different manners. RL-37 may insert more deeply into the lipid bilayer than LL-37, which remains aggregated. AFM (atomic force microscopy) performed on the same supported bilayer as used for ATR-FTIR measurements suggests a carpet-like mode of permeabilization for RL37 and formation of more defined worm-holes for LL-37. Comparison of data from the biological activity on bacterial cells with permeabilization of model membranes indicates that the structure/aggregation state also affects the trajectory of the peptides from bulk solution through the outer cell-wall layers to the membrane. The results of the present study suggest that F-form cathelicidin orthologues may have evolved to have primarily a direct antimicrobial defensive capacity, whereas the A-forms have somewhat sacrificed this to gain host-cell modulating functions.  相似文献   
953.
The potential on N-vanillylnonanamide (NVN) in preventing the attachment of Pseudomonas stutzeri and a Bacillus cereus-group strain was investigated. NVN up to 852 μM was not toxic, nor was it an energy source for either organism. Microbial attachment assays were carried out on glass and polylysine slides. with NVN being dispersed in or applied to the surfaces using a polyurethane coating. NVN at 205 μM inhibited Bacillus adhesion on glass slides by 48% and the percentage did not significantly increase at 852 μM. NVN blended into or sprayed onto the coating at 205 μmol/kg did not prevent adhesion. The compound is therefore not useful as an antifouling product under the tested coating conditions.  相似文献   
954.
Intense disturbance may locally destroy patches of habitat and shape the landscape into a mosaic of reassembling communities. The development of ecosystem properties during such community reassembly is poorly understood. In intertidal bare sediments, trophic relations between microphytobenthos or heterotrophic bacteria and macrofauna invertebrates may guarantee fundamental ecosystem properties such as carbon flow through the food web. We studied the dynamic relation between reassembling macrofauna communities and such microbial carbon flow during recovery after severe disturbance. We deliberately induced prolonged hypoxia in winter and early summer and allowed recolonisation for periods of two and five months. Carbon flow was quantified from basal resources (microphytobenthos and bacteria) to intermediate consumers using 13C as a tracer. Within the period of study (5 months), microbial carbon flow fully recovered, although macrofauna diversity was still very low compared to the natural communities (ranging from 6 to 17 species). More than 90% of microbial carbon flow to macrofauna was due to the consumers that recolonised within two months. Two of these species were dominant contributors to microphytobenthos carbon transfer to fauna. Furthermore, at an early stage of reassembly, this ecosystem property was remarkably similar when disturbance took place at different times of the year (winter or early summer), although there were differences in assemblage composition and functional diversity. We conclude that species assemblages and ecosystem function developed relatively independently in this benthic system. We discuss which ecological factors may have caused such non-parallel development of macrofaunal communities and carbon flow.  相似文献   
955.

Nitrification is a key biological process for the control of soil NO3 ? availability and N losses from terrestrial ecosystems. The study investigates the causes for the absence of net nitrification activity in the soil of a Mediterranean monospecific woodland of Arbutus unedo, focusing in particular on the possible role of chemicals produced by this plant. The mineral N pool, net rates of mineralization and nitrification were measured in the soil top 10 cm over 18 months. Raw extracts of leaves and roots of Arbutus unedo and soil underneath Arbutus plant canopy were purified using chromatographic techniques and the structure of chemicals was defined using spectroscopic and spectrometric methods. Leaf extracts (raw, aqueous and organic fractions) were tested for their toxicity on net nitrification, using a test soil. Field and laboratory incubations showed soil NO3 ? concentration below the detection limit over the whole study period, despite the significant NH4 + availability. Toxicity tests indicated that more than 400 μg of extract g?1 dry soil were needed to have more than 50% reduction of net NO3 ? production. Gallocatechin and catechin were among the most abundant chemicals in the extracts of leaves, roots and soil. Their soil concentration was significantly higher than the annual calculated input via leaf litter, and it was in the range of toxic concentrations, as deduced from the dose-response curve of the toxicity test. Data support the hypothesis that plant produced chemicals might be involved in the limited net nitrate production in this Mediterranean woodland.

  相似文献   
956.
The opportunistic pathogen Pseudomonas aeruginosa can grow in low oxygen, because it is capable of anaerobic respiration using nitrate as a terminal electron acceptor (denitrification). An intermediate of the denitrification pathway is nitric oxide, a compound that may become cytotoxic at high concentration. The intracellular levels of nitric oxide are tightly controlled by regulating the expression of the enzymes responsible for its synthesis and degradation (nitrite and nitric oxide reductases). In this article, we present the crystallographic structure of the wild‐type dissimilative nitrate respiration regulator (DNR), a master regulator controlling expression of the denitrification machinery and a putative target for new therapeutic strategies. Comparison with other structures among the CRP‐FNR class of regulators reveals that DNR has crystallized in a conformation that has never been observed before. In particular, the sensing domain of DNR has undergone a rotation of more than 50° with respect to the other structures. This suggests that DNR may undergo an unexpected and very large conformational rearrangement on activation. Proteins 2009. © 2009 Wiley‐Liss, Inc.  相似文献   
957.
A statistical method to predict protein pKa has been developed by using the 3D structure of a protein and a database of 434 experimental protein pKa values. Each pKa in the database is associated with a fingerprint that describes the chemical environment around an ionizable residue. A computational tool, MoKaBio, has been developed to identify automatically ionizable residues in a protein, generate fingerprints that describe the chemical environment around such residues, and predict pKa from the experimental pKa values in the database by using a similarity metric. The method, which retrieved the pKa of 429 of the 434 ionizable sites in the database correctly, was crossvalidated by leave‐one‐out and yielded root mean square error (RMSE) = 0.95, a result that is superior to that obtained by using the Null Model (RMSE 1.07) and other well‐established protein pKa prediction tools. This novel approach is suitable to rationalize protein pKa by comparing the region around the ionizable site with similar regions whose ionizable site pKa is known. The pKa of residues that have a unique environment not represented in the training set cannot be predicted accurately, however, the method offers the advantage of being trainable to increase its predictive power. Proteins 2009. © 2009 Wiley‐Liss, Inc.  相似文献   
958.
Mesoangioblasts are vessel-derived progenitor cells that can be induced to differentiate into different cell types of the mesoderm such as muscle and bone. Here we examined the role of transforming growth factor-beta (TGFbeta), a pleiotropic cytokine that plays a major role in development and specifically induces smooth muscle differentiation of mesoangioblasts, in the regulation of death and survival of these cells. TGFbeta exerts a marked anti-apoptotic action in mesoangioblasts with a mechanism involving regulation of sphingosine kinase 1 (SphK1), one of the isoforms responsible for S1P formation. Treatment with the cytokine efficaciously protected mesoangioblasts from apoptosis induced by serum starvation or staurosporine treatment assessed by various means such as activation of caspase-3, determination of cytoplasmic histone-associated-DNA-fragments and PE-AnnexinV staining. The protective action of TGFbeta from staurosporine-induced apoptosis was strongly reduced when the SphK activity was inhibited by drugs, when SphK1 but not SphK2 was downregulated by specific siRNA and when a SphK1 dominant negative mutant was overexpressed. Staurosporine treatment induced down-regulation of both SphK isoforms and TGFbeta rescued SphK1 but not SphK2 expression. Interestingly, TGFbeta strongly enhanced SphK activity during staurosporine-induced cell death. Both TGFbeta-induced SphK1 up-regulation and TGFbeta anti-apoptotic action were found to be dependent on p42/44 MAPK activation.  相似文献   
959.
Chaperonins are macromolecular machines that assist in protein folding. The archaeon Methanosarcina mazei has acquired numerous bacterial genes by horizontal gene transfer. As a result, both the bacterial group I chaperonin, GroEL, and the archaeal group II chaperonin, thermosome, coexist. A proteome‐wide analysis of chaperonin interactors was performed to determine the differential substrate specificity of GroEL and thermosome. At least 13% of soluble M. mazei proteins interact with chaperonins, with the two systems having partially overlapping substrate sets. Remarkably, chaperonin selectivity is independent of phylogenetic origin and is determined by distinct structural and biochemical features of proteins. GroEL prefers well‐conserved proteins with complex α/β domains. In contrast, thermosome substrates comprise a group of faster‐evolving proteins and contain a much wider range of different domain folds, including small all‐α and all‐β modules, and a greater number of large multidomain proteins. Thus, the group II chaperonins may have facilitated the evolution of the highly complex proteomes characteristic of eukaryotic cells.  相似文献   
960.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号