首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5463篇
  免费   418篇
  2023年   32篇
  2022年   58篇
  2021年   149篇
  2020年   68篇
  2019年   120篇
  2018年   139篇
  2017年   128篇
  2016年   201篇
  2015年   307篇
  2014年   334篇
  2013年   443篇
  2012年   517篇
  2011年   496篇
  2010年   304篇
  2009年   247篇
  2008年   339篇
  2007年   348篇
  2006年   317篇
  2005年   253篇
  2004年   251篇
  2003年   221篇
  2002年   200篇
  2001年   39篇
  2000年   27篇
  1999年   36篇
  1998年   46篇
  1997年   20篇
  1996年   26篇
  1995年   21篇
  1994年   14篇
  1993年   18篇
  1992年   31篇
  1991年   15篇
  1990年   14篇
  1989年   12篇
  1988年   14篇
  1987年   9篇
  1986年   10篇
  1985年   9篇
  1984年   3篇
  1983年   5篇
  1982年   5篇
  1981年   4篇
  1980年   4篇
  1979年   2篇
  1978年   4篇
  1977年   4篇
  1975年   3篇
  1969年   2篇
  1968年   2篇
排序方式: 共有5881条查询结果,搜索用时 125 毫秒
101.
Predator depletion on Cape Cod (USA) has released the herbivorous crab Sesarma reticulatum from predator control leading to the loss of cordgrass from salt marsh creek banks. After more than three decades of die-off, cordgrass is recovering at heavily damaged sites coincident with the invasion of green crabs ( Carcinusmaenas ) into intertidal Sesarma burrows. We hypothesized that Carcinus is dependent on Sesarma burrows for refuge from physical and biotic stress in the salt marsh intertidal and reduces Sesarma functional density and herbivory through consumptive and non-consumptive effects, mediated by both visual and olfactory cues. Our results reveal that in the intertidal zone of New England salt marshes, Carcinus are burrow dependent, Carcinus reduce Sesarma functional density and herbivory in die-off areas and Sesarma exhibit a generic avoidance response to large, predatory crustaceans. These results support recent suggestions that invasive Carcinus are playing a role in the recovery of New England salt marshes and assertions that invasive species can play positive roles outside of their native ranges.  相似文献   
102.
Synaptic transmission and plasticity mediated by NMDA receptors (NMDARs) could modulate the severity of multiple sclerosis (MS). Here the role of NMDARs in MS was first explored in 691 subjects carrying specific allelic variants of the NR1 subunit gene or of the NR2B subunit gene of this glutamate receptor. The analysis was replicated for significant SNPs in an independent sample of 1548 MS subjects. The C allele of rs4880213 was found to be associated with reduced NMDAR-mediated cortical excitability, and with increased probability of having more disability than the CT/TT MS subjects. MS severity was higher in the CC group among relapsing-remitting MS (RR-MS) patients, while primary progressive MS (PP-MS) subjects homozygous for the T allele had more pronounced clinical worsening. Mean time to first relapse, but not to an active MRI scan, was lower in the CC group of RR-MS patients, and the number of subjects with two or more clinical relapses in the first two years of the disease was higher in CC compared to CT/TT group. Furthermore, the percentage of relapses associated with residual disability was lower in subjects carrying the T allele. Lesion load at the MRI was conversely unaffected by the C or T allele of this SNP in RR-MS patients. Axonal and neuronal degeneration at the optical coherence tomography was more severe in the TT group of PP-MS patients, while reduced retinal nerve fiber thickness had less consequences on visual acuity in RR-MS patients bearing the T allele. Finally, the T allele was associated with preserved cognitive abilities at the Rao’s brief repeatable neuropsychological battery in RR-MS. Signaling through glutamate NMDARs enhances both compensatory synaptic plasticity and excitotoxic neurodegeneration, impacting in opposite ways on RR-MS and PP-MS pathophysiological mechanisms.  相似文献   
103.
Molecular Biology Reports - TBI is the main cause of death and disability in individuals aged 1–45 in Western countries. One of the main challenges of TBI at present is the lack of specific...  相似文献   
104.
Rational embellishment of self-assembling two-dimensional (2D) proteins make it possible to build 3D nanomaterials with novel catalytic, optoelectronic and mechanical properties. However, introducing multiple sites of embellishment into 2D protein arrays without affecting the self-assembly is challenging, limiting the ability to program in additional functionality and new 3D configurations. Here we introduce two orthogonal covalent linkages at multiple sites in a 2D crystalline-forming protein without affecting its self-assembly. We first engineered the surface-layer protein SbsB from Geobacillus stearothermophilus pV72/p2 to display isopeptide bond-forming protein conjugation pairs, SpyTag or SnoopTag, at four positions spaced 5.7-10.5 nm apart laterally and 3 nm axially. The C-terminal and two newly-identified locations within SbsB monomer accommodated the short SpyTag or SnoopTag peptide tags without affecting the 2D lattice structure. Introducing tags at distinct locations enabled orthogonal and covalent binding of SpyCatcher- or SnoopCatcher-protein fusions to micron-sized 2D nanosheets. By introducing different types of bifunctional cross-linkers, the dual-functionalized nanosheets were programmed to self-assemble into different 3D stacks, all of which retain their nanoscale order. Thus, our work creates a modular protein platform that is easy to program to create dual-functionalized 2D and lamellar 3D nanomaterials with new catalytic, optoelectronic, and mechanical properties.  相似文献   
105.
106.
Glaucoma is one of the leading causes of blindness in developed countries and is mainly attributable to the apoptosis of retinal ganglion cells (RGCs). Although several diagnostic tools have been developed to detect and monitor this disease, none has the requisite sensitivity to identify it at a preclinical stage or to perceive small changes in retinal health over short periods. Specifically, irreversible visual changes occur before neuronal damage is discovered. The most widely accepted in vitro assay for apoptotic cells involves the use of fluorescent annexin A5. The radiolabelling of this marker makes it possible to assess, in vivo and non-invasively, various diseases in which the apoptotic process is pivotal, such as myocardial infarction or tumour response to chemotherapy. Recently, a new technique has been developed to visualise directly individual RGCs undergoing apoptosis in the living eye. This DARC (detection of apoptosing retinal cells) technology uses fluorescently labelled annexin A5 to bind apoptosing retinal neurons and confocal scanning laser ophthalmoscopy to detect the marked dying cells. Based on experimental models, DARC has been suggested to offer a direct and quantitative assessment of the retinal condition of patients. A Phase I clinical trial in glaucoma patients is scheduled to start shortly. This technology has the potential to pre-empt the diagnosis of glaucoma prior to visual deterioration, to provide an accurate numeric evaluation highlighting even small retinal changes and to allow the rapid judgement of the efficacy of both current and new therapeutic strategies.  相似文献   
107.
The RNA helicase Upf1 is a multifaceted eukaryotic enzyme involved in DNA replication, telomere metabolism and several mRNA degradation pathways. Upf1 plays a central role in nonsense-mediated mRNA decay (NMD), a surveillance process in which it links premature translation termination to mRNA degradation with its conserved partners Upf2 and Upf3. In human, both the ATP-dependent RNA helicase activity and the phosphorylation of Upf1 are essential for NMD. Upf1 activation occurs when Upf2 binds its N-terminal domain, switching the enzyme to the active form. Here, we uncovered that the C-terminal domain of Upf1, conserved in higher eukaryotes and containing several essential phosphorylation sites, also inhibits the flanking helicase domain. With different biochemical approaches we show that this domain, named SQ, directly interacts with the helicase domain to impede ATP hydrolysis and RNA unwinding. The phosphorylation sites in the distal half of the SQ domain are not directly involved in this inhibition. Therefore, in the absence of multiple binding partners, Upf1 is securely maintained in an inactive state by two intramolecular inhibition mechanisms. This study underlines the tight and intricate regulation pathways required to activate multifunctional RNA helicases like Upf1.  相似文献   
108.
109.
The first crystal structure of human telomeric DNA in complex with the natural alkaloid berberine, produced by different plant families and used in folk medicine for millennia, was solved by X-ray diffraction method. The G-quadruplex unit features all-parallel strands. The overall folding assumed by DNA is the same found in previously reported crystal structures. Similarly to previously reported structures the ligand molecules were found to be stacked onto the external 5′ and 3′-end G-tetrads. However, the present crystal structure highlighted for the first time, the presence of two berberine molecules in the two binding sites, directly interacting with each tetrad. As a consequence, our structural data point out a 2:1 ligand to G-tetrad molar ratio, which has never been reported before in a telomeric intramolecular quadruplex structure.  相似文献   
110.
Tumor-associated macrophages (TAMs) derived from peripheral blood monocytes recruited into the renal cell carcinoma (RCC) microenvironment. In response to inflammatory stimuli, macrophages undergo M1 (classical) or M2 (alternative) activation. M1 cells produce high levels of inflammatory cytokines, such as tumor necrosis factor-α, interleukin (IL)-12, IL-23 and IL-6, while M2 cells produce anti-inflammatory cytokines, such as IL-10, thus contributing to RCC-related immune dysfunction. The presence of extensive TAM infiltration in RCC microenvironment contributes to cancer progression and metastasis by stimulating angiogenesis, tumor growth, and cellular migration and invasion. Moreover, TAMs are involved in epithelial–mesenchymal transition of RCC cancer cells and in the development of tumor resistance to targeted agents. Interestingly, macrophage autophagy seems to play an important role in RCC. Based on this scenario, TAMs represent a promising and effective target for cancer therapy in RCC. Several strategies have been proposed to suppress TAM recruitment, to deplete their number, to switch M2 TAMs into antitumor M1 phenotype and to inhibit TAM-associated molecules. In this review, we summarize current data on the essential role of TAMs in RCC angiogenesis, invasion, impaired anti-tumor immune response and development of drug resistance, thus describing the emerging TAM-centered therapies for RCC patients.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号