首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5678篇
  免费   472篇
  国内免费   1篇
  6151篇
  2023年   37篇
  2022年   84篇
  2021年   149篇
  2020年   71篇
  2019年   117篇
  2018年   150篇
  2017年   132篇
  2016年   199篇
  2015年   305篇
  2014年   335篇
  2013年   443篇
  2012年   528篇
  2011年   497篇
  2010年   310篇
  2009年   251篇
  2008年   341篇
  2007年   355篇
  2006年   317篇
  2005年   262篇
  2004年   255篇
  2003年   229篇
  2002年   208篇
  2001年   36篇
  2000年   32篇
  1999年   47篇
  1998年   50篇
  1997年   23篇
  1996年   28篇
  1995年   25篇
  1994年   16篇
  1993年   20篇
  1992年   36篇
  1991年   26篇
  1990年   22篇
  1989年   24篇
  1988年   20篇
  1987年   13篇
  1986年   15篇
  1985年   10篇
  1984年   8篇
  1983年   9篇
  1982年   7篇
  1980年   8篇
  1979年   10篇
  1978年   15篇
  1975年   7篇
  1974年   6篇
  1972年   10篇
  1971年   8篇
  1967年   7篇
排序方式: 共有6151条查询结果,搜索用时 13 毫秒
101.
Two-dimensional 1H NMR spectroscopy over a range of temperature through thermal unfolding has been applied to the low-spin, ferric cyanide complex of myoglobin from Aplysia limacina to search for intermediates in the unfolding and to characterize the effect of temperature on the magnetic properties and electronic structure of the heme iron. The observation of strictly linear behavior from 5 to 80 C degrees through the unfolding transition for all hyperfine-shifted resonances indicates the absence of significant populations of intermediate states to the cooperative unfolding with Tm approximately 80 degrees C. The magnetic anisotropies and orientation of the magnetic axes for the complete range of temperatures were also determined for the complex. The anisotropies have very similar magnitudes, and exhibit the expected characteristic temperature dependence, previously observed in the isoelectronic sperm whale myoglobin complex. In contrast to sperm whale Mb, where the orientation of the magnetic axis was completely temperature-independent, the tilt of the major magnetic axis, which correlates with the Fe-CN tilt, decreases at high temperature in Aplysia limacina Mb, indicating a molecular structure that is conserved with temperature, although more plastic than that of sperm whale Mb. The pattern of contact shifts reflects a conserved Fe-His(F8) bond and pi-spin delocalization into the heme, as expected for the orientation of the axial His imidazole.  相似文献   
102.
We analyzed Niemann-Pick type C disease 1 (NPC1) gene in 12 patients with Niemann-Pick type C disease by sequencing both cDNA obtained from fibroblasts and genomic DNA. All the patients were compound heterozygotes. We found 15 mutations, eight of which previously unreported. The comparison of cDNA and genomic DNA revealed discrepancies in some subjects. In two unrelated patients carrying the same mutations (P474L and nt 2972del2) only one mutant allele (P474L), was expressed in fibroblasts. The mRNA corresponding to the other allele was not detected even in cells incubated with cycloheximide. The promoter variants (-1026T/G and -1186T/C or -238 C/G), found to be in linkage with 2972del2 allele do not explain the lack of expression of this allele, as they were also found in control subjects. In another patient, (N1156S/Q922X) the N1156S allele was expressed in fibroblasts while the expression of the other allele was hardly detectable. In a fourth patient cDNA analysis revealed a point mutation in exon 20 (P1007A) and a 56 nt deletion in exon 22 leading to a frameshift and a premature stop codon. The first mutation was confirmed in genomic DNA; the second turned out to be a T-->G transversion in exon 22, predicted to cause a missense mutation (V1141G). In fact, this transversion generates a donor splice site in exon 22, which causes an abnormal pre-mRNA splicing leading to a partial deletion of this exon. In some NPC patients, therefore, the comparison between cDNA and genomic DNA may reveal an unexpected expression of some mutant alleles of NPC1 gene.  相似文献   
103.
The 5'-leader of HIV-1 RNA controls many viral functions. Nucleocapsid (NC) domains of gag-precursor proteins select genomic RNA for packaging by binding several sites in the leader. One is likely to be a stem defect in SL1 that can adopt either a 1 x 3 internal loop, SL1i (including G247, A271, G272, G273) or a 1 x 1 internal loop (G247 x G273) near a two-base bulge (A269-G270). It is likely that these two conformations are both present and exchange readily. A 23mer RNA construct described here models SL1i and cannot slip into the alternate form. It forms a 1:1 complex with NCp7, which interacts most strongly at G247 and G272 (K(d) = 140 nM). This demonstrates that a linear G-X-G sequence is unnecessary for high-affinity binding. The NMR-based structure shows an easily broken G247:A271 base pair. G247 stacks on both of its immediate neighbors and A271 on its 5'-neighbor; G272 and G273 are partially ordered. A bend in the helix axis between the SL1 stems on either side of the internal loop is probable. An important step in maturation of the virus is the transition from an apical loop-loop interaction to a dimer involving intermolecular interactions along the full length of SL1. A bend in the stem may be important in relieving strain and ensuring that the strands do not become entangled during the transition. A stem defect with special affinity for NCp7 may accelerate the rate of the dimer transformation. This complex could become an important target for anti-HIV drug development, where a drug could exert its action near a high-energy intermediate on the pathway for maturation of the dimer.  相似文献   
104.
De novo aberrations in chromosome structure represent important categories of paternally transmitted genetic damage. Unlike numerical abnormalities, the majority of de novo structural aberrations among human offspring are of paternal origin. We report the development of a three-color fluorescence in situ hybridization (FISH) assay (CT8) to detect mouse sperm carrying structural and numerical chromosomal abnormalities. The CT8 assay uses DNA probes for the centromeric and telomeric regions of chromosome 2, and a probe for the subcentromeric region of chromosome 8. The CT8 assay was used to measure the frequencies of sperm carrying certain structural aberrations involving chromosome 2 (del2ter, dup2ter, del2cen, dup2cen), disomy 2, disomy 8, and sperm diploidy. Analysis of approximately 80,000 sperm from eight B6C3F1 mice revealed an average baseline frequency of 2.5 per 10,000 sperm carrying partial duplications and deletions of chromosome 2. Extrapolated to the entire haploid genome, approximately 0.4% of mouse sperm are estimated to carry structural chromosomal aberrations, which is more than fivefold lower than the spontaneous frequencies of sperm with chromosome structural aberrations in man. We validated the CT8 assay by comparing the frequencies of abnormal segregants in sperm of T(2;14) translocation carriers detected by this assay against those detected by chromosome painting cytogenetic analysis of meiosis II spermatocytes. The CT8 sperm FISH assay is a promising method for detecting structural chromosome aberrations in mouse sperm with widespread applications in genetics, physiology, and genetic toxicology.  相似文献   
105.
106.
Quality by design (QbD) is an innovative approach to drug development that has started to be implemented into the regulatory framework, but currently mainly for chemical drugs. The recent marketing authorization of the first monoclonal antibody developed using extensive QbD concepts in the European Union paves the way for future further regulatory approvals of complex products employing this cutting-edge technological concept. In this paper, we report and comment on insights and lessons learnt from the non-public discussions in the European Medicines Agency''s Biologicals Working Party and Committee for Medicinal Products for Human Use on the key issues during evaluation related to the implementation of an extensive QbD approach for biotechnology-derived medicinal products. Sharing these insights could prove useful for future developments in QbD for biotech products in general and monoclonal antibodies in particular.  相似文献   
107.
Cultivated psychropiezophilic (low-temperature- and high-pressure-adapted) bacteria are currently restricted to phylogenetically narrow groupings capable of growth under nutrient-replete conditions, limiting current knowledge of the extant functional attributes and evolutionary constraints of diverse microorganisms inhabiting the cold, deep ocean. This study documents the isolation of a deep-sea bacterium following dilution-to-extinction cultivation using a natural seawater medium at high hydrostatic pressure and low temperature. To our knowledge, this isolate, designated PRT1, is the slowest-growing (minimal doubling time, 36 h) and lowest cell density-producing (maximal densities of 5.0 × 106 cells ml−1) piezophile yet obtained. Optimal growth was at 80 MPa, correlating with the depth of capture (8,350 m), and 10°C, with average cell sizes of 1.46 μm in length and 0.59 μm in width. Through detailed growth studies, we provide further evidence for the temperature-pressure dependence of the growth rate for deep-ocean bacteria. PRT1 was phylogenetically placed within the Roseobacter clade, a bacterial lineage known for widespread geographic distribution and assorted lifestyle strategies in the marine environment. Additionally, the gene transfer agent (GTA) g5 capsid protein gene was amplified from PRT1, indicating a potential mechanism for increased genetic diversification through horizontal gene transfer within the hadopelagic environment. This study provides a phylogenetically novel isolate for future investigations of high-pressure adaptation, expands the known physiological traits of cultivated members of the Roseobacter lineage, and demonstrates the feasibility of cultivating novel microbial members from the deep ocean using natural seawater.  相似文献   
108.
109.
110.
Imatinib is the first molecular targeted therapy that has shown clinical success, but imatinib acquired resistance, although a rare event, is critical during the therapy of chronic myelogenous leukaemia (CML). With the aim of better understanding the molecular mechanisms accompanying acquisition of resistance to this drug, a comparative proteomic approach was undertaken on CML cell lines LAMA 84 S (imatinib sensitive) and LAMA 84 R (imatinib resistant). Forty-four differentially expressed proteins were identified and categorized into five main functional classes: (I) heat shock proteins and chaperones; (II) nucleic acid interacting proteins (binding/synthesis/stability); (III) structural proteins, (IV) cell signaling, and (V) metabolic enzymes. Several heat shock proteins known to complex Bcr-Abl were overexpressed in imatinib resistant cells, showing a possible involvement of these proteins in the mechanism of resistance. HnRNPs also resulted in being up-regulated in imatinib resistant cells. These proteins have been shown to be strongly and directly related to Bcr-Abl activity. To our knowledge, this is the first direct proteomic comparison of imatinib sensitive/resistant CML cell lines.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号