首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5320篇
  免费   408篇
  5728篇
  2024年   3篇
  2023年   37篇
  2022年   83篇
  2021年   148篇
  2020年   68篇
  2019年   116篇
  2018年   137篇
  2017年   128篇
  2016年   195篇
  2015年   300篇
  2014年   331篇
  2013年   432篇
  2012年   509篇
  2011年   487篇
  2010年   299篇
  2009年   243篇
  2008年   332篇
  2007年   337篇
  2006年   309篇
  2005年   249篇
  2004年   242篇
  2003年   215篇
  2002年   192篇
  2001年   32篇
  2000年   20篇
  1999年   30篇
  1998年   44篇
  1997年   18篇
  1996年   24篇
  1995年   20篇
  1994年   13篇
  1993年   16篇
  1992年   27篇
  1991年   13篇
  1990年   9篇
  1989年   7篇
  1988年   9篇
  1987年   5篇
  1986年   7篇
  1985年   7篇
  1984年   3篇
  1983年   5篇
  1982年   4篇
  1981年   4篇
  1980年   3篇
  1979年   2篇
  1978年   4篇
  1977年   2篇
  1975年   2篇
  1939年   1篇
排序方式: 共有5728条查询结果,搜索用时 15 毫秒
101.
Although prostate carcinoma is an aggressive cancer preferentially metastasizing to the bones, many prostate tumors remain localized and confined to the prostate indefinitely. Prediction of the behavior of anatomically localized and moderately differentiated prostate tumors remains difficult because of lack of prognostic markers. Cell motility is an important step in the progression of epithelial tumor toward invasive metastatic carcinomas and changes in the expression and function of adhesion molecules contribute to the acquisition of a more malignant phenotype. Proline-rich tyrosine kinase 2 (Pyk2) is implicated in regulating the organization of actin cytoskeleton, a process critical for cell migration, mitosis, and tumor metastasis. In this report, we investigated whether Pyk2 played a role in the acquisition of an aggressive phenotype in prostate cell. Data reported here demonstrate that loss of Pyk2 kinase function results in induction of cell motility and migration in EPN cells, a line of non-transformed epithelial cells derived from human normal prostate tissue. Changes in motility and migration of prostate cells were associated with changes in the expression of several proteins involved in cell adhesion and reorganization of actin cytoskeleton. Ablation of Pyk2 kinase activity caused a dramatic decrease of the expression of E-cadherin and IRS1 and an increase of the expression of alpha5-integrin. In addition, a massive reorganization of actin cytoskeleton was observed. Our data indicate that Pyk2 plays a central role in the mechanism that regulate cell-cell and cell-substrate interaction and lack of its kinase activity induces prostate cells to acquire a malignant, migrating phenotype.  相似文献   
102.
103.
Mental retardation is a frequent cause of intellectual and physical impairment. Several genes associated with mental retardation have been mapped to the X chromosome, among them, there is FMR1. The absence of or mutation in the Fragile Mental Retardation Protein, FMRP, is responsible for the Fragile X syndrome. FMRP is an RNA binding protein that shuttles between the nucleus and the cytoplasm. FMRP binds to several mRNAs including its own mRNA at a sequence region containing a G quartet structure. Some of the candidate downstream genes recently identified encode for synaptic proteins. Neuronal studies indicate that FMRP is located at synapses and loss of FMRP affects synaptic plasticity. At the synapses, FMRP acts as a translational repressor and in particular regulates translation of specific dendritic mRNAs, some of which encode cytoskeletal proteins and signal transduction molecules. This action occurs via a ribonucleoprotein complex that includes a small dendritic non-coding neuronal RNA that determines the specificity of FMRP function via a novel mechanism of translational repression. Since local protein synthesis is required for synaptic development and function, this role of FMRP likely underlies some of the behavioural and developmental symptoms of FRAXA patients. Finally we review recent work on the Drosophila system that connects cytoskeleton remodelling and FMRP function.  相似文献   
104.
Fetomaternal tolerance has been shown to depend both on regulatory T cells (Tregs) and negative signals from the PD1-PDL1 costimulatory pathway. More recently, IL-17-producing T cells (Th17) have been recognized as a barrier in inducing tolerance in transplantation. In this study, we investigate the mechanisms of PDL1-mediated regulation of fetomaternal tolerance using an alloantigen-specific CD4(+) TCR transgenic mouse model system (ABM-tg mouse). PDL1 blockade led to an increase in embryo resorption and a reduction in litter size. This was associated with a decrease in Tregs, leading to a lower Treg/effector T cell ratio. Moreover, PDL1 blockade inhibited Ag-specific alloreactive T cell apoptosis and induced apoptosis of Tregs and a shift toward higher frequency of Th17 cells, breaking fetomaternal tolerance. These Th17 cells arose predominantly from CD4(+)Foxp3(-) cells, rather than from conversion of Tregs. Locally in the placenta, similar decrease in regulatory and apoptotic markers was observed by real-time PCR. Neutralization of IL-17 abrogated the anti-PDL1 effect on fetal survival rate and restored Treg numbers. Finally, the adoptive transfer of Tregs was also able to improve fetal survival in the setting of PDL1 blockade. This is to our knowledge the first report using an alloantigen-specific model that establishes a link between PDL1, Th17 cells, and fetomaternal tolerance.  相似文献   
105.
Plants contain three classes of hemoglobins which are not associated with nitrogen fixing bacteria, and have been accordingly termed nonsymbiotic hemoglobins. The function of nonsymbiotic hemoglobins is as yet mostly unknown. A NO dioxygenase activity has been proposed and demonstrated for some of them in vitro. In this context, a sound molecular mechanism that relates the structure with the biological activity is crucial to suggest a given physiological role. Insight into such a mechanism is now facilitated by recent progress made in both experimental and computational techniques. These studies have highlighted a number of key structural features implicated in the function of nonsymbiotic hemoglobins. The bis-histidyl hexacoordination of the heme in both its ferric and ferrous states provides a powerful and general tool to modulate reactivity, protein dynamics, and shape of the cavities. In addition, the specific arrangement of distal cavity residues provides effective protection against autoxidation. Inspection of the static crystal structures available for both liganded and unliganded states seems unsufficient to explain the function of these proteins. Function appears to be intimately linked with protein flexibility, which influences the dynamical behavior of inner cavities, capable of delivering apolar reactants to the reaction site, and removing charged reaction products. In this mini review, we demonstrate how the integration of information derived from experimental assays and computational studies is valuable and can shed light into the linkage between structural plasticity of nonsymbiotic hemoglobins and their biological role.  相似文献   
106.
Plasmid pTer331 from the bacterium Collimonas fungivorans Ter331 is a new member of the pIPO2/pSB102 family of environmental plasmids. The 40 457-bp sequence of pTer331 codes for 44 putative ORFs, most of which represent genes involved in replication, partitioning and transfer of the plasmid. We confirmed that pTer331 is stably maintained in its native host. Deletion analysis identified a mini-replicon capable of replicating autonomously in Escherichia coli and Pseudomonas putida. Furthermore, plasmid pTer331 was able to mobilize and retromobilize IncQ plasmid pSM1890 at typical rates of 10(-4) and 10(-8), respectively. Analysis of the 91% DNA sequence identity between pTer331 and pIPO2 revealed functional conservation of coding sequences, the deletion of DNA fragments flanked by short direct repeats (DR), and sequence preservation of long DRs. In addition, we experimentally established that pTer331 has no obvious contribution in several of the phenotypes that are characteristic of its host C. fungivorans Ter331, including the ability to efficiently colonize plant roots. Based on our findings, we hypothesize that cryptic plasmids such as pTer331 and pIPO2 might not confer an individual advantage to bacteria, but, due to their broad-host-range and ability to retromobilize, benefit bacterial populations by accelerating the intracommunal dissemination of the mobile gene pool.  相似文献   
107.
Teicoplanin, a member of the “last chance” antibiotic family has a similar structure and the same mechanism of action as parent drug vancomycin, which is proved to be an effective binder of Cu(II) ions. However, the potentiometric and spectroscopic studies (UV-visible, CD, NMR) have shown that the modification of the N-terminal structure of the peptide backbone in teicoplanin affects considerably the binding ability towards Cu(II) ions. While vancomycin forms almost instantly the stable 3 N complex species involving the N-terminal and two amide nitrogen donors, in case of teicoplanin only two nitrogen donors derived from the N-terminal amino group and adjacent peptide bond are coordinated to Cu(II) ion within the whole pH range studied. The major factor influencing the binding mode is most likely the structure of the N-terminus of the peptide unit in the antibiotic ligand.  相似文献   
108.

Background

Malignant melanoma is the deadliest form of skin cancer and is refractory to conventional chemotherapy and radiotherapy. Therefore alternative approaches to treat this disease, such as immunotherapy, are needed. Melanoma vaccine design has mainly focused on targeting CD8+ T cells. Activation of effector CD8+ T cells has been achieved in patients, but provided limited clinical benefit, due to immune-escape mechanisms established by advanced tumors. We have previously shown that alphavirus-based virus-like replicon particles (VRP) simultaneously activate strong cellular and humoral immunity against the weakly immunogenic melanoma differentiation antigen (MDA) tyrosinase. Here we further investigate the antitumor effect and the immune mechanisms of VRP encoding different MDAs.

Methodology/Principal Findings

VRP encoding different MDAs were screened for their ability to prevent the growth of the B16 mouse transplantable melanoma. The immunologic mechanisms of efficacy were investigated for the most effective vaccine identified, focusing on CD8+ T cells and humoral responses. To this end, ex vivo immune assays and transgenic mice lacking specific immune effector functions were used. The studies identified a potent therapeutic VRP vaccine, encoding tyrosinase related protein 2 (TRP-2), which provided a durable anti-tumor effect. The efficacy of VRP-TRP2 relies on a novel immune mechanism of action requiring the activation of both IgG and CD8+ T cell effector responses, and depends on signaling through activating Fcγ receptors.

Conclusions/Significance

This study identifies a VRP-based vaccine able to elicit humoral immunity against TRP-2, which plays a role in melanoma immunotherapy and synergizes with tumor-specific CD8+ T cell responses. These findings will aid in the rational design of future immunotherapy clinical trials.  相似文献   
109.
The accumulation of beta-amyloid peptides into senile plaques is one of the hallmarks of Alzheimer's disease (AD). There is mounting evidence that the lipid matrix of neuronal cell membranes plays an important role in the beta-sheet oligomerization process of beta-amyloid. Abeta(25-35), the sequence of which is GSNKGAIIGLM, is a highly toxic segment of amyloid beta (Abeta)-peptides, which forms fibrillary aggregates. In the present work, two spin-labelled Abeta(25-35) analogues containing the nitroxide group of the amino acid TOAC (2,2,6,6-tetramethylpiperidine-1-oxyl-4-amino-4-carboxylic acid) as a paramagnetic probe at the N- or the C-terminus of the peptide sequence, respectively, were synthesized in order to investigate the peptide-membrane interaction. The orientation and associated changes of the peptide conformation in the presence of different artificial membrane models (micelles, liposomes) were evaluated by electron paramagnetic resonance and circular dichroism techniques. The results of this study allowed us to propose a model in which the C-terminal portion of the peptide is highly associated to the membrane, while the N-terminal part extends into the aqueous phase with occasional contacts with the lipid head-group region. Interestingly, the interaction of the C-terminal portion of the peptide is particularly enhanced in the presence of sodium dodecyl sulfate (SDS) molecules.  相似文献   
110.
The effects of the antagonist naltrindole (NTI) on cells of the immune system have been largely studied although the mechanisms of action are still unclear. The aim of this study is to evaluate, in vitro, the immunomodulatory activity of four new delta-selective opioid compounds structurally related to naltrindole. The effects at different concentrations of these opioid antagonists on proliferative response were studied on normal human peripheral blood mononuclear cells (PBMC) stimulated with different stimuli: mitogens, the antigen PPD, the anti-CD3 monoclonal antibodies (mAb), the superantigen Staphylococcus aureus Cowan strain 1 (SAC) and alloantigens in the mixed lymphocyte cultures (MLR). The immunomodulatory capacity of these compounds was evaluated by determining the interleukin-2 (IL-2) release in mitogen activated PBMC. The present study shows that all the new delta opioid antagonists at 10(-5) M concentration are immunosuppressive. The inhibitory action is also evident at lower concentrations when anti-CD3 mAb and SAC were used as stimulators. In addition, the production of IL-2 was inhibited by the opioid treatment, but this might not be the only mechanism of action.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号