首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5431篇
  免费   410篇
  2023年   31篇
  2022年   85篇
  2021年   151篇
  2020年   69篇
  2019年   118篇
  2018年   141篇
  2017年   131篇
  2016年   199篇
  2015年   304篇
  2014年   334篇
  2013年   444篇
  2012年   515篇
  2011年   494篇
  2010年   304篇
  2009年   245篇
  2008年   341篇
  2007年   339篇
  2006年   318篇
  2005年   251篇
  2004年   245篇
  2003年   220篇
  2002年   194篇
  2001年   36篇
  2000年   21篇
  1999年   32篇
  1998年   45篇
  1997年   18篇
  1996年   26篇
  1995年   21篇
  1994年   13篇
  1993年   14篇
  1992年   26篇
  1991年   11篇
  1990年   9篇
  1989年   9篇
  1988年   11篇
  1987年   5篇
  1986年   10篇
  1985年   7篇
  1984年   4篇
  1983年   6篇
  1982年   4篇
  1981年   4篇
  1980年   4篇
  1979年   3篇
  1978年   5篇
  1977年   3篇
  1975年   3篇
  1973年   3篇
  1965年   2篇
排序方式: 共有5841条查询结果,搜索用时 15 毫秒
251.
Photosynthetic glyceraldehyde-3-phosphate dehydrogenase (GAPDH) of Spinacia oleracea belongs to a wide group of GAPDHs found in most organisms displaying oxygenic photosynthesis, including cyanobacteria, green and red algae, and higher plants. As a major catalytic difference with respect to glycolytic GAPDH, photosynthetic GAPDH exhibits dual cofactor specificity toward pyridine nucleotides with a preference for NADP(H). Here we report the crystal structure of NAD-complexed recombinant A(4)-GAPDH (NAD-A(4)-GAPDH) from Spinacia oleracea, expressed in Escherichia coli. Its superimposition onto native A(4)-GAPDH complexed with NADP (NADP-A(4)-GAPDH) pinpoints specific conformational changes resulting from cofactor replacement. In photosynthetic NAD-A(4)-GAPDH, the side chain of Asp32 is oriented toward the coenzyme to interact with the adenine ribose diol, similar to glycolytic GAPDHs (NAD-specific). On the contrary, in NADP-A(4)-GAPDH Asp32 moves away to accommodate the additional 2'-phosphate group of the coenzyme and to minimize electrostatic repulsion. Asp32 rotation is allowed by the presence of the small residue Ala40, conserved in most photosynthetic GAPDHs, replacing bulky amino acid side chains in glycolytic GAPDHs. While in NADP-A(4)-GAPDH two amino acids, Thr33 and Ser188, are involved in hydrogen bonds with the 2'-phosphate group of NADP, in the NAD-complexed enzyme these interactions are lacking. The crystallographic structure of NAD-A(4)-GAPDH highlights that four residues, Thr33, Ala40, Ser188, and Ala187 (Leu, Leu, Pro, and Leu respectively, in glycolytic Bacillus stearothermophilus GAPDH sequence) are of primary importance for the dual cofactor specificity of photosynthetic GAPDH. These modifications seem to trace the minimum evolutionary route for a primitive NAD-specific GAPDH to be converted into the NADP-preferring enzyme of oxygenic photosynthetic organisms.  相似文献   
252.
The backbone assignment of the copper-zinc superoxide dismutase amyotrophic lateral sclerosis G93A mutant was performed on an (15)N-enriched protein sample. (15)N R(1), R(2), and R(1)(rho) and (15)N-(1)H NOE experiments were then carried out at 600 MHz on G93A Cu(2)Zn(2)SOD and the values compared to the dynamics data for the "wild-type" protein. In addition, (15)N and (1)H chemical shift comparisons between wild-type Cu(2)Zn(2)SOD and its G93A mutant were also made. G93A exhibits a higher mobility than wild-type Cu(2)Zn(2)SOD, particularly in loops III and V, on a time scale faster than the rate of protein tumbling. There are also distinct chemical shift and NOE differences in residues 35-42 and 92-95, which comprise these loops. These two regions of Cu(2)Zn(2)SOD form the end of the beta-barrel termed the "beta-barrel plug" [Tainer, J. A., Getzoff, E. D., Beem, K. M., Richardson, J. S., and Richardson, D. C. (1982) J. Mol. Biol. 160, 181-217]. The increased mobility and reduction of the number of observed NOEs in this region indicate an opening of the beta-barrel that may lead to amyloid fibrillogenesis. Alternatively, a motor neuron-specific substrate may bind this region of the protein, leading to deleterious modifications and/or reactions.  相似文献   
253.
Chronic, low-dose treatment of male rats with cyclophosphamide, a chemotherapeutic agent, is known to affect progeny outcome adversely in a dose-dependent and time-specific manner, resulting in increased pre- and postimplantation loss as well as malformations. Concern exists regarding the genetic quality of mature gametes exposed to cyclophosphamide during mitosis and meiosis. The goal of the present study was to determine the effect of chronic cyclophosphamide treatment during spermatogenesis on the frequency of numerical chromosomal anomalies in epididymal spermatozoa. Male rats were treated with either saline or cyclophosphamide (6 mg kg-1 day-1) for 6 or 9 wk, and cauda epididymal spermatozoa were collected. The rat sperm Y-4 fluorescence in situ hybridization assay was used to assess the induction of spermatozoal disomy, nullisomy, and diploidy involving chromosomes Y and 4. The overall frequency of numerically abnormal spermatozoa was elevated approximately 2-fold (P < 0.001) after 9 wk of cyclophosphamide treatment. Exposure for 9 wk, but not for 6 wk, significantly increased the frequency of spermatozoa with chromosome 4 disomy (P < 0.02) and nullisomy (P < 0.05), but disomy Y and diploidy were not significantly increased with treatment compared to corresponding controls. Independent of treatment, only 27% of aneuploid spermatozoa presented with morphological abnormalities, but all diploid spermatozoa were approximately twice the size of normal cells. Thus, cyclophosphamide disrupts meiotic events before pachynema during spermatogenesis, emphasizing the potential for adverse progeny outcomes following genotoxic damage.  相似文献   
254.
Mocci F  Saba G 《Biopolymers》2003,68(4):471-485
Molecular dynamics simulations have been employed to probe the sequence-specific binding of sodium ions to the minor groove of B-DNA of three A. T-rich oligomers having identical compositions but different orders of the base pairs: C(AT)(4)G, CA(4)T(4)G, and CT(4)A(4)G. Recent experimental investigations, either in crystals or in solution, have shown that monovalent cations bind to DNA in a sequence-specific mode, preferentially in the narrow minor groove regions of uninterrupted sequences of four or more adenines (A-tracts), replacing a water molecule of the ordered hydration structure, the hydration spine. Following this evidence, it has been hypothesized that in A-tracts these events may be responsible for structural peculiarities such as a narrow minor groove and a curvature of the helix axis. The present simulations confirm a sequence specificity of the binding of sodium ions: Na(+) intrusions in the first layer of hydration of the minor groove, with long residence times, up to approximately 3 ns, are observed only in the minor groove of A-tracts but not in the alternating sequence. The effects of these intrusions on the structure of DNA depend on the ion coordination: when the ion replaces a water molecule of the spine, the minor groove becomes narrower. Ion intrusions may also disrupt the hydration spine modifying the oligomer structure to a large extent. However, in no case intrusions were observed to locally bend the axis toward the minor groove. The simulations also show that ions may reside for long time periods in the second layer of hydration, particularly in the wider regions of the groove, often leading to an opening of the groove.  相似文献   
255.
The present study looks at possible changes in the activity of acetylcholinesterase (AChE) in tissues (brain and white muscle) of the Mediterranean bony fish Sparus auratus after a 20 days exposure to sublethal concentrations (0.1 or 0.5 ppm) of copper in the marine water and on control untreated animals. The trials also included measurements of Cu concentration in the tissues to evaluate possible metal accumulation. Moreover, sedimentation analysis as well as V(max) and K(m) determination were carried out in tissue extracts of Cu-exposed or control animals. V(max) and K(m) were also determined with or without addition of Cu(2+) in the assay. No Cu accumulation occurred in brain and muscle after Cu exposure. AChE showed in both tissues a molecular polymorphism with putative globular (G) and asymmetric (A) forms. Cu exposition led to an increased specific activity and improved catalytic efficiency of AChE in brain and muscle, seemingly regarding G forms. The increase in catalytic efficiency also resulted from the in vitro assay with tissue extracts and Cu(2+) addition. The higher AChE activity and catalytic efficiency in both tissues after Cu exposition and without metal accumulation, suggests an increase of free Cu aliquot into the cells, likely due to mechanisms of metal homeostasis.  相似文献   
256.
Pl-nectin is an ECM protein located on the apical surface of ectoderm cells of Paracentrotus lividus sea urchin embryo. Inhibition of ECM-ectoderm cell interaction by the addition of McAb to Pl-nectin to the culture causes a dramatic impairment of skeletogenesis, offering a good model for the study of factor(s) involved in skeleton elongation and patterning. We showed that skeleton deficiency was not due to a reduction in the number of PMCs ingressing the blastocoel, but it was correlated with a reduction in the number of Pl-SM30-expressing PMCs. Here, we provide evidence on the involvement of growth factor(s) in skeleton morphogenesis. Skeleton-defective embryos showed a strong reduction in the levels of expression of Pl-univin, a growth factor of the TGF-beta superfamily, which was correlated with an equivalent strong reduction in the levels of Pl-SM30. In contrast, expression levels of Pl-BMP5-7 remained low and constant in both skeleton-defective and normal embryos. Microinjection of horse serum in the blastocoelic cavity of embryos cultured in the presence of the antibody rescued skeleton development. Finally, we found that misexpression of univin is also sufficient to rescue defects in skeleton elongation and SM30 expression caused by McAb to Pl-nectin, suggesting a key role for univin or closely related factor in sea urchin skeleton morphogenesis.  相似文献   
257.
The human immunodeficiency Rev protein shuttles between the nucleus and cytoplasm, while accumulating to high levels in the nucleus. Rev has a nuclear localization signal (NLS; AA 35-50) with an arginine-rich motif (ARM) that interacts with importin beta and a leucine-rich nuclear export signal (NES; AA 75-84) recognized by CRM1/exportin 1. Here we explore nuclear targeting activities of the transport signals of Rev. GFP tagging and quantitative fluorescence microscopy were used to study the localization behavior of Rev NLS/ARM mutants under conditions inhibiting the export of Rev. Rev mutant M5 was actively transported to the nucleus, despite its known failure to bind importin beta. Microinjection of transport substrates with Rev-NES peptides revealed that the Rev-NES has both nuclear import and export activities. Replacement of amino acid residues "PLER" (77-80) of the NES with alanines abolished bidirectional transport activity of the Rev-NES. These results indicate that both transport signals of Rev have nuclear import capabilities and that the Rev NLS has more than one nuclear targeting activity. This suggests that Rev is able to use various routes for nuclear entry rather than depending on a single pathway.  相似文献   
258.
Epidermal growth factor receptor: mechanisms of activation and signalling   总被引:19,自引:0,他引:19  
The epidermal growth factor (EGF) receptor (EGFR) is one of four homologous transmembrane proteins that mediate the actions of a family of growth factors including EGF, transforming growth factor-alpha, and the neuregulins. We review the structure and function of the EGFR, from ligand binding to the initiation of intracellular signalling pathways that lead to changes in the biochemical state of the cell. The recent crystal structures of different domains from several members of the EGFR family have challenged our concepts of these processes.  相似文献   
259.
260.
The enhanced green fluorescent protein (EGFP) is increasingly used as a reporter gene in viral vectors for a number of applications. To establish a system to study the activity of cis-acting cellular regulatory sequences, we deleted the viral enhancer in EGFP-carrying retroviral vectors and replaced it with cell type-specific elements. In this study, we use this system to demonstrate the activity of the human CD2 lymphoid-specific and the Tie2 endothelial cell type-specific enhancers in cell lines and in primary cells transduced by retroviral vectors. Furthermore, we compare findings obtained with EGFP as the reporter gene to those obtained replacing EGFP with d2EGFP, an unstable variant of EGFP characterized by a much shorter half-life compared to EGFP, and by reduced accumulation in the cells. d2EGFP-carrying vectors were generated at titers which were not different from those generated by the corresponding vectors carrying EGFP. Moreover, the activity of a Moloney murine leukemia virus enhancer could be readily detected following transduction of target cells with either EGFP- or d2EGFP-carrying vectors. However, the activity of the relatively weak CD2 and Tie2 enhancers was exclusively detected using EGFP as the reporter gene.These findings indicate that enhancer replacement is a feasible and promising approach to address the function of cell type-specific regulatory elements in retroviral vectors carrying the EGFP gene.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号