首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5426篇
  免费   414篇
  5840篇
  2024年   3篇
  2023年   38篇
  2022年   83篇
  2021年   148篇
  2020年   68篇
  2019年   116篇
  2018年   138篇
  2017年   129篇
  2016年   196篇
  2015年   304篇
  2014年   337篇
  2013年   435篇
  2012年   516篇
  2011年   491篇
  2010年   299篇
  2009年   246篇
  2008年   337篇
  2007年   341篇
  2006年   309篇
  2005年   253篇
  2004年   247篇
  2003年   220篇
  2002年   193篇
  2001年   38篇
  2000年   23篇
  1999年   31篇
  1998年   44篇
  1997年   19篇
  1996年   25篇
  1995年   21篇
  1994年   14篇
  1993年   14篇
  1992年   26篇
  1991年   14篇
  1990年   12篇
  1989年   13篇
  1988年   11篇
  1987年   7篇
  1986年   11篇
  1985年   13篇
  1984年   5篇
  1983年   5篇
  1982年   5篇
  1981年   4篇
  1980年   3篇
  1979年   5篇
  1978年   6篇
  1976年   5篇
  1975年   5篇
  1973年   6篇
排序方式: 共有5840条查询结果,搜索用时 15 毫秒
81.
Hyaluronic acid (HA), an essential component of the extracellular matrix, is an efficient space filler that maintains hydration, serves as a substrate for assembly of proteoglycans and is involved in wound healing. Although numerous pieces of evidence demonstrate beneficial effects in promoting wound healing in diabetes, a systemic approach has never been tested. We used an incisional wound healing model in genetically diabetic mice to test the effects of systemic injection of HA. Diabetic (n = 56) and normoglycemic (n = 56) mice were subjected to incision and randomized (8 groups of 7 animals each) to receive HA at different doses, 7.5, 15 and 30 mg/kg/i.p., or vehicle (0.9% NaCl solution) for 12 days. At the end of the experiment animals were sacrificed and skin wounds were excised for histological, biochemical and molecular analysis. Histology revealed that the most effective dose to improve wound repair and angiogenesis in diabetic mice was 30 mg/kg. Furthermore HA injection (30 mg/kg) improved the altered healing pattern in diabetic animals, increased skin remodeling proteins TGF-β and transglutaminase-II and restored the altered expression of cyclin B1/Cdc2 complex. Evaluation of skin from diabetic animals injected with HA revealed also an increase in HA content, suggesting that systemic injection may be able to restore the reduced intracellular HA pool of diabetic mice. Finally HA markedly improved skin mechanical properties. These promising results, if confirmed in a clinical setting, may improve the care and management of diabetic patients.  相似文献   
82.

Background

Highly Expressed in Cancer protein 1 (Hec1) is a constituent of the Ndc80 complex, a kinetochore component that has been shown to have a fundamental role in stable kinetochore-microtubule attachment, chromosome alignment and spindle checkpoint activation at mitosis. HEC1 RNA is found up-regulated in several cancer cells, suggesting a role for HEC1 deregulation in cancer. In light of this, we have investigated the consequences of experimentally-driven Hec1 expression on mitosis and chromosome segregation in an inducible expression system from human cells.

Methodology/Principal Findings

Overexpression of Hec1 could never be obtained in HeLa clones inducibly expressing C-terminally tagged Hec1 or untagged Hec1, suggesting that Hec1 cellular levels are tightly controlled. On the contrary, a chimeric protein with an EGFP tag fused to the Hec1 N-terminus accumulated in cells and disrupted mitotic division. EGFP- Hec1 cells underwent altered chromosome segregation within multipolar spindles that originated from centriole splitting. We found that EGFP-Hec1 assembled a mutant Ndc80 complex that was unable to rescue the mitotic phenotypes of Hec1 depletion. Kinetochores harboring EGFP-Hec1 formed persisting lateral microtubule-kinetochore interactions that recruited the plus-end depolymerase MCAK and the microtubule stabilizing protein HURP on K-fibers. In these conditions the plus-end kinesin CENP-E was preferentially retained at kinetochores. RNAi-mediated CENP-E depletion further demonstrated that CENP-E function was required for multipolar spindle formation in EGFP-Hec1 expressing cells.

Conclusions/Significance

Our study suggests that modifications on Hec1 N-terminal tail can alter kinetochore-microtubule attachment stability and influence Ndc80 complex function independently from the intracellular levels of the protein. N-terminally modified Hec1 promotes spindle pole fragmentation by CENP-E-mediated plus-end directed kinetochore pulling forces that disrupt the fine balance of kinetochore- and centrosome-associated forces regulating spindle bipolarity. Overall, our findings support a model in which centrosome integrity is influenced by the pathways regulating kinetochore-microtubule attachment stability.  相似文献   
83.
Plants contain three classes of hemoglobins which are not associated with nitrogen fixing bacteria, and have been accordingly termed nonsymbiotic hemoglobins. The function of nonsymbiotic hemoglobins is as yet mostly unknown. A NO dioxygenase activity has been proposed and demonstrated for some of them in vitro. In this context, a sound molecular mechanism that relates the structure with the biological activity is crucial to suggest a given physiological role. Insight into such a mechanism is now facilitated by recent progress made in both experimental and computational techniques. These studies have highlighted a number of key structural features implicated in the function of nonsymbiotic hemoglobins. The bis-histidyl hexacoordination of the heme in both its ferric and ferrous states provides a powerful and general tool to modulate reactivity, protein dynamics, and shape of the cavities. In addition, the specific arrangement of distal cavity residues provides effective protection against autoxidation. Inspection of the static crystal structures available for both liganded and unliganded states seems unsufficient to explain the function of these proteins. Function appears to be intimately linked with protein flexibility, which influences the dynamical behavior of inner cavities, capable of delivering apolar reactants to the reaction site, and removing charged reaction products. In this mini review, we demonstrate how the integration of information derived from experimental assays and computational studies is valuable and can shed light into the linkage between structural plasticity of nonsymbiotic hemoglobins and their biological role.  相似文献   
84.
85.
Human cystic echinococcosis is a chronic, complex and neglected infection. Its clinical management has evolved over decades without adequate evaluation of efficacy. Recent expert opinion recommends that uncomplicated inactive cysts of the liver should be left untreated and solely monitored over time (“watch-and-wait” approach). However, clinical data supporting this approach are still scant and published mostly as conference proceedings. In this study, we report our experience with long-term sonographic and serological follow-up of inactive cysts of the liver. From March 1994 to October 2013, 38 patients with 47 liver cysts, diagnosed as inactive without any previous treatment history, were followed with ultrasound and serology at 6–12 months intervals for a period of at least 24 months (median follow-up 51.95 months) in our outpatient clinic. In 97.4% of patients, the cysts remained inactive over time and in only one case was reactivation of the cyst detected. No complications occurred during the time of monitoring. During follow-up, serology tests for CE were negative at diagnosis or became negative in 74.1% and were positive or became positive in 25.9% of cases. Patients with inactive cysts on ultrasound but positive serological tests were also investigated by CT scan (chest and abdomen) to rule out extra-hepatic cyst localization. This study confirms the importance of a stage-specific approach to the management of cystic echinococcosis and supports the use of a monitoring-only approach to inactive, uncomplicated cysts of the liver. It also confirms that serology plays only an ancillary role in the clinical management of these patients, compared to ultrasound and other imaging techniques. The implications of these findings for clinical management and natural history of cystic echinococcosis are discussed.  相似文献   
86.
NAD plays essential redox and non-redox roles in cell biology. In mammals, its de novo and recycling biosynthetic pathways encompass two independent branches, the “amidated” and “deamidated” routes. Here we focused on the indispensable enzymes gating these two routes, i.e. nicotinamide mononucleotide adenylyltransferase (NMNAT), which in mammals comprises three distinct isozymes, and NAD synthetase (NADS). First, we measured the in vitro activity of the enzymes, and the levels of all their substrates and products in a number of tissues from the C57BL/6 mouse. Second, from these data, we derived in vivo estimates of enzymes''rates and quantitative contributions to NAD homeostasis. The NMNAT activity, mainly represented by nuclear NMNAT1, appears to be high and nonrate-limiting in all examined tissues, except in blood. The NADS activity, however, appears rate-limiting in lung and skeletal muscle, where its undetectable levels parallel a relative accumulation of the enzyme''s substrate NaAD (nicotinic acid adenine dinucleotide). In all tissues, the amidated NAD route was predominant, displaying highest rates in liver and kidney, and lowest in blood. In contrast, the minor deamidated route showed higher relative proportions in blood and small intestine, and higher absolute values in liver and small intestine. Such results provide the first comprehensive picture of the balance of the two alternative NAD biosynthetic routes in different mammalian tissues under physiological conditions. This fills a gap in the current knowledge of NAD biosynthesis, and provides a crucial information for the study of NAD metabolism and its role in disease.  相似文献   
87.
Does elevated atmospheric CO2 concentrations affect wood decomposition?   总被引:10,自引:0,他引:10  
This study was conducted to test the hypothesis that wood tissues generated under elevated atmospheric [CO2] have lower quality and subsequent reduced decomposition rates. Chemical composition and subsequent field decomposition rates were studied for beech (Fagus sylvatica L.) twigs grown under ambient and elevated [CO2] in open top chambers. Elevated [CO2] significantly affected the chemical composition of beech twigs, which had 38% lower N and 12% lower lignin concentrations than twigs grown under ambient [CO2]. The strong decrease in N concentration resulted in a significant increase in the C/N and lignin/N ratios of the beech wood grown at elevated [CO2]. However, the elevated [CO2] treatment did not reduce the decomposition rates of twigs, neither were the dynamics of N and lignin in the decomposing beech wood affected by the [CO2] treatment, despite initial changes in N and lignin concentrations between the ambient and elevated [CO2] beech wood. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
88.
During the last few years, geographical information systems (GIS) have spread as powerful tools for landscape analysis. The main purpose of this work was to use GIS to display an ecological network made up of core areas, key areas and ecological corridors. As an example of the application of this method we refer to the population of deer (Cervus elaphus) and roe deer (Capreolus capreolus) in an alpine area in northwestern Italy. The method provided an overall view of the ecological network of the area, highlighting how linear infrastructures can affect animal populations and consequently, their survival probability.  相似文献   
89.
Metastasis is the primary cause of death in prostate cancer (PCa) patients. Effective therapeutic intervention in metastatic PCa is undermined by our poor understanding of its molecular aetiology. Defining the mechanisms underlying PCa metastasis may lead to insights into how to decrease morbidity and mortality in this disease. Glyoxalase 1 (Glo1) is the detoxification enzyme of methylglyoxal (MG), a potent precursor of advanced glycation end products (AGEs). Hydroimidazolone (MG‐H1) and argpyrimidine (AP) are AGEs originating from MG‐mediated post‐translational modification of proteins at arginine residues. AP is involved in the control of epithelial to mesenchymal transition (EMT), a crucial determinant of cancer metastasis and invasion, whose regulation mechanisms in malignant cells are still emerging. Here, we uncover a novel mechanism linking Glo1 to the maintenance of the metastatic phenotype of PCa cells by controlling EMT by engaging the tumour suppressor miR‐101, MG‐H1‐AP and TGF‐β1/Smad signalling. Moreover, circulating levels of Glo1, miR‐101, MG‐H1‐AP and TGF‐β1 in patients with metastatic compared with non‐metastatic PCa support our in vitro results, demonstrating their clinical relevance. We suggest that Glo1, together with miR‐101, might be potential therapeutic targets for metastatic PCa, possibly by metformin administration.  相似文献   
90.
Biological Invasions - It is widely assumed that spillover of alien parasites to native host species severely impacts naïve populations, ultimately conferring a competitive advantage to...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号