首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   94704篇
  免费   417篇
  国内免费   900篇
  96021篇
  2022年   20篇
  2021年   32篇
  2020年   34篇
  2019年   37篇
  2018年   11881篇
  2017年   10702篇
  2016年   7492篇
  2015年   660篇
  2014年   360篇
  2013年   402篇
  2012年   4335篇
  2011年   12926篇
  2010年   12075篇
  2009年   8288篇
  2008年   9896篇
  2007年   11431篇
  2006年   341篇
  2005年   572篇
  2004年   1028篇
  2003年   1082篇
  2002年   851篇
  2001年   289篇
  2000年   187篇
  1999年   68篇
  1998年   20篇
  1997年   44篇
  1996年   38篇
  1995年   12篇
  1994年   17篇
  1993年   46篇
  1992年   37篇
  1991年   55篇
  1990年   21篇
  1989年   11篇
  1988年   22篇
  1987年   26篇
  1986年   13篇
  1985年   11篇
  1984年   16篇
  1983年   19篇
  1978年   6篇
  1975年   5篇
  1972年   246篇
  1971年   275篇
  1970年   5篇
  1965年   13篇
  1962年   24篇
  1956年   5篇
  1944年   12篇
  1940年   10篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
861.
We measured perioperative plasma concentrations of brain-derived neurotrophic factor (BDNF), a major mediator of synaptic plasticity in the central nervous system, in males, 30-65 years old, undergoing lumbar or cervical discotomy. Patients were randomly allocated to a general anesthetic with propofol induction and maintenance or with thiopental induction and isoflurane maintenance. BDNF plasma concentrations were measured before induction (baseline), 15 min after induction but before start of surgery, at skin closure, in the post-anesthetic care unit, and 24 h postoperatively. Data from 26 patients (13 in each group) were analyzed. At each time point, BDNF plasma concentrations showed large variability. At baseline, concentrations were 631 +/- 337 (mean +/- SD) pg ml(-1) in the propofol group and were 549 +/- 512 pg ml(-1) in the thiopental-isoflurane group (P = 0.31). At 15 min, concentrations significantly decreased in the propofol group (247 +/- 219 pg ml(-1), P = 0.0012 compared with baseline) but remained unchanged in the thiopental-isoflurane group (597 +/- 471 pg ml(-1), P = 0.798 compared with baseline). At skin closure and in the post-anesthetic care unit, concentrations were not different from baseline in both groups. At 24 h, concentrations significantly decreased below baseline in both groups (propofol: 232 +/- 129 pg ml(-1), P = 0.0015; thiopental-isoflurane: 253 +/- 250 pg ml(-1), P = 0.016). In the propofol group, there was a weak but statistically significant positive correlation (R2 = 0.38, P = 0.026) between the duration of surgery and BDNF plasma concentrations at skin closure. These data suggest that in males undergoing elective minor surgery, BDNF plasma concentrations show a specific pattern that is influenced by the anesthetic technique and, possibly, by the duration of surgery.  相似文献   
862.
The thermoacidophilic archaeon Sulfolobus solfataricus MT4 encodes a maltooligosyltrehalose synthase (MTS), that catalyzes an intramolecular transglycosylation process converting the glycosidic linkages at the reducing end of dextrins from alpha-1,4 into alpha-1,1. In this research the gene encoding MTS was cloned and expressed in Lactococcus lactis NZ9000 using the so-called NICE system. Growth conditions of the recombinant strain were optimized in flask experiments in relation to enzyme production. Batch experiments in 2 L-fermenters were performed on the best identified semidefined medium and 256 U L(-1) of recombinant MTS were produced. Purified recombinant MTS shows its optimal activity at 70 degrees C and pH 5.5, prefers maltoheptaose and maltohexaose as substrates, and demonstrates minimal side hydrolytic activity.  相似文献   
863.
Twenty-eight isolates of Trichoderma belonging to four different species were screened in vitro for their antagonistic ability against Fusarium oxysporum f.sp. dianthi causing carnation wilt. Three different levels of antagonism observed in dual plate assay were further confirmed by cell-free culture filtrate experiments. Isolates showing class I level of antagonism produced maximum lytic enzymes, chitinases and beta-1,3-glucanases. Genetic variability of 25 selected isolates was assessed by random amplified polymorphic DNA technique and the amplified products were correlated for their level of antagonism. Unweighed pair-group method with arithmetical averages cluster analysis revealed prominent inter-and intraspecific genetic variation among the isolates. Based on their genetic relationship, the isolates were mainly distributed into 3 major groups representing T. atroviride, T. pseudokoningii and T. harzianum, with 20-35% interspecific dissimilarity. However, the polymorphism shown by the isolates did not correlate to their level of antagonism.  相似文献   
864.
Eight adult female harp seals (Pagophilus groenlandicus) of the White Sea–Barents Sea stock were tagged with satellite-linked dive recorders during the nursing period and followed from breeding in late February 1995 until moulting in late April 1995. Another ten adult harp seals of both sexes were tagged and followed from moult in early May 1996 until breeding in late February the following year. Between breeding and moult the seals were distributed along the coasts of Kola of Russia and eastern Finnmark of Norway, coinciding in time and space with the spawning capelin (Mallotus villosus). Between moulting and breeding they encircled the entire Barents Sea, mostly in open water, using the water column from 20 to 300 m, and in so doing by and large reflecting the annual migrations of the capelin. Capelin is therefore assumed to be the main source of prey for the White Sea–Barents Sea stock of harp seals, to be substituted, in part, by amphipods (e.g. Themisto libellula) in mid-summer and polar cod (Boreogadus saida) and herring (Clupea pallasii) in late autumn and winter. These data provide a baseline for the evaluation of the effects of future climatic change in the rich Barents Sea ecosystem.  相似文献   
865.
The paper focuses on the effect of a nine-year utilisation of the peat-bark substrate and crop rotation of six main forest tree species on changes in the substrate enzymatic activity during successive rotation cycles. The study was conducted in the forest nursery in the years 1989–1997. Seedlings of Scots pine Pinus sylvestris, Norway spruce Picea abies, European larch Larix decidua, pendiculate oak Quercus robur, common beech Fagus silvatica, and silver birch Betula overrucosa were grown on peat-bark substrate. The activity of soil enzymes: betaglucosidase, invertase, urease, asparginase, acid phosphatase and dehydrogenases was assessed. The succession of three 3-year crop rotation cycles with species following each other according to the rotation plan was subject to observations. The obtained results have confirmed recent suppositions that the tree species and their rotation modify soil enzymatic activity. The enzymatic activity of the peat-bark substrate changed after each three-year crop rotation cycle and decreased with time. After the second crop rotation cycle the activity of betaglucosidase, urease, asparginase was found to be lower, and the activity of invertase and dehydrogenases — higher. After three crop rotation cycles the positive effect of appropriate species rotation on the enzymatic activity of the substrate was noted.  相似文献   
866.
The specification of germ cells is an important process during the development of all animals. Expression of an evolutionarily conserved gene such as vasa can be used as a marker for germ cell fate. We have isolated a vasa-related gene from the two-spotted spider mite (Tetranychus urticae) and used it to examine the segregation of germ cells in this animal. In spider mites, vasa expression first appears in a group of cells that do not join the initial blastoderm surface. Instead, these cells remain in the interior of the blastoderm and then migrate to posterior regions of the embryo, where they form a cluster that appears in regions of the embryo consistent with the gonads. The expression pattern of this spider mite vasa homologue implies a novel process acts to specify germ cells in this species and that the specification of germ cells is an evolutionarily labile process.  相似文献   
867.
Yang D  Guo F  Liu B  Huang N  Watkins SC 《Planta》2003,216(4):597-603
In order to understand the characteristics of recombinant protein expression and sublocalization in rice ( Oryza sativa L.) endosperm, we examined the expression level of human lysozyme protein and its subcellular location in transgenic rice seeds driven by rice glutelin and globulin promoters and signal peptides. A time course of human lysozyme expression during endosperm development was analyzed. The results showed that the expression profile of recombinant protein accumulation in endosperm paralleled that of the two storage proteins. Immunofluorescence microscopy revealed that human lysozyme and storage proteins co-localized to type-II protein bodies. Both promoter-signal peptide parings targeted recombinant protein to the protein bodies. In addition, a transgenic line with a higher lysozyme expression level exhibited morphologically different protein bodies with an unbalanced composition of lysozyme and native storage proteins. The high-level expression of recombinant protein distorted the trafficking and sorting of native storage proteins in rice endosperm and affected the expression of native storage protein.  相似文献   
868.
Chasmagnathus granulata is a South American crab occurring in estuarine salt marshes of the Brazilian, Uruguayan and Argentine coasts. Life history is characterized by an export strategy of its larval stages. I reviewed information on experimental manipulation of salinity during embryonic and larval development (pre- and posthatching salinities), and on habitat characteristics of C. granulata in order to determine potential effects of larval response to salinity in the field and to suggest consequences for the population structure. Local populations are spread over coastal areas with different physical characteristics. Benthic phases occupy estuaries characterized by different patterns of salinity variation, and release larvae to coastal waters characterized by strong salinity gradients. The zoea 1 of C. granulata showed a strong acclimatory response to low salinity. This response operated only during the first weeks of development (during zoeae 1 and 2) since subsequent larval survival at low posthatching salinities was consistently low. Larvae developing at low salinity frequently followed a developmental pathway with five instead of four zoeal stages. The ability to acclimate and the variability in larval development (i.e. the existence of alternative developmental pathways) could be interpreted as a strategy to buffer environmental variability at spatial scales of local or population networks. Early survivorship and production of larvae may be relatively high across a rather wide range of variability in salinity (5–32‰). Plastic responses to low salinity would therefore contribute to maintain a certain degree of population connectivity and persistence regardless of habitat heterogeneity. Electronic Publication  相似文献   
869.
As a cellular signaling molecule, nitric oxide (NO) is widely conserved from microorganisms, such as bacteria, yeasts, and fungi, to higher eukaryotes including plants and mammals. NO is mainly produced by NO synthase (NOS) or nitrite reductase (NIR) activity. There are several NO detoxification systems, including NO dioxygenase (NOD) and S-nitrosoglutathione reductase (GSNOR). NO homeostasis based on the balance between NO synthesis and degradation is important for the regulation of its physiological functions because an excess level of NO causes nitrosative stress due to the high reactivity of NO and NO-derived compounds. In yeast, NO may be involved in stress responses, but NO and its signaling have been poorly understood due to the lack of mammalian NOS orthologs in the genome. Even though the activities of NOS and NIR have been observed in yeast cells, the gene encoding NOS and the NO production mechanism catalyzed by NIR remain unclear. On the other hand, yeast cells employ NOD and GSNOR to maintain an intracellular redox balance following endogenous NO production, exogenous NO treatment, or environmental stresses. This article reviews NO metabolism (synthesis, degradation) and its regulation in yeast. The physiological roles of NO in yeast, including the oxidative stress response, are also discussed here. Such investigations into NO signaling are essential for understanding the NO-dependent genetic and physiological modulations. In addition to being responsible for the pathology and pharmacology of various degenerative diseases, NO signaling may be a potential target for the construction and engineering of industrial yeast strains.  相似文献   
870.
Candida lipolytica was cultured batchwise using n-hexadecane as the main carbon source. Biomass production, n-hexadecane consumption, oxygen consumption, and carbon dioxide evolution were measured to follow the fermentation. The consistency of the measured data was examined using integrated and instantaneous available electron and carbon balances. Values of the “true” growth yield, ηmax, and maintenance coefficient, me were estimated using three different sets of data (biomass and n-hexadecane, oxygen and biomass, and CO2 and biomass), and the results were compared with estimates obtained from literature data. Hysteresis patterns were observed in plots of specific rates of oxygen consumption and carbon dioxide evolution versus specific growth rate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号