首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   662篇
  免费   39篇
  国内免费   1篇
  702篇
  2023年   3篇
  2022年   4篇
  2021年   6篇
  2020年   8篇
  2019年   7篇
  2018年   4篇
  2017年   11篇
  2016年   15篇
  2015年   22篇
  2014年   22篇
  2013年   49篇
  2012年   37篇
  2011年   49篇
  2010年   32篇
  2009年   29篇
  2008年   38篇
  2007年   44篇
  2006年   41篇
  2005年   29篇
  2004年   28篇
  2003年   29篇
  2002年   23篇
  2001年   8篇
  2000年   7篇
  1999年   10篇
  1998年   9篇
  1997年   4篇
  1996年   11篇
  1995年   6篇
  1994年   6篇
  1993年   10篇
  1992年   7篇
  1991年   5篇
  1990年   3篇
  1989年   7篇
  1988年   3篇
  1986年   5篇
  1985年   5篇
  1984年   5篇
  1983年   4篇
  1982年   9篇
  1981年   11篇
  1980年   4篇
  1977年   3篇
  1976年   2篇
  1975年   3篇
  1974年   4篇
  1973年   3篇
  1971年   2篇
  1970年   2篇
排序方式: 共有702条查询结果,搜索用时 15 毫秒
101.
Franca EF  Freitas LC  Lins RD 《Biopolymers》2011,95(7):448-460
Molecular dynamics simulations have been carried out to characterize the structure and solubility of chitosan nanoparticle‐like structures as a function of the deacetylation level (0, 40, 60, and 100%) and the spatial distribution of the N‐acetyl groups in the particles. The polysaccharide chains of highly N‐deacetylated particles where the N‐acetyl groups are uniformly distributed present a high flexibility and preference for the relaxed two‐fold helix and five‐fold helix motifs. When these groups are confined to a given region of the particle, the chains adopt preferentially a two‐fold helix with ? and ψ values close to crystalline chitin. Nanoparticles with up to 40% acetylation are moderately soluble, forming stable aggregates when the N‐acetyl groups are unevenly distributed. Systems with 60% or higher N‐acetylation levels are insoluble and present similar degrees of swelling regardless the distribution of their N‐acetyl groups. Overall particle solvation is highly affected by electrostatic forces resulting from the degree of acetylation. The water mobility and orientation around the polysaccharide chains affects the stability of the intramolecular O3‐HO3(n)···O5(n +1) hydrogen bond, which in turn controls particle aggregation. © 2011 Wiley Periodicals, Inc. Biopolymers 95: 448–460, 2011.  相似文献   
102.
Mycobacterium tuberculosis is an extremely well adapted intracellular human pathogen that is exposed to multiple DNA damaging chemical assaults originating from the host defence mechanisms. As a consequence, this bacterium is thought to possess highly efficient DNA repair machineries, the nucleotide excision repair (NER) system amongst these. Although NER is of central importance to DNA repair in M. tuberculosis, our understanding of the processes in this species is limited. The conserved UvrABC endonuclease represents the multi-enzymatic core in bacterial NER, where the UvrA ATPase provides the DNA lesion-sensing function. The herein reported genetic analysis demonstrates that M. tuberculosis UvrA is important for the repair of nitrosative and oxidative DNA damage. Moreover, our biochemical and structural characterization of recombinant M. tuberculosis UvrA contributes new insights into its mechanism of action. In particular, the structural investigation reveals an unprecedented conformation of the UvrB-binding domain that we propose to be of functional relevance. Taken together, our data suggest UvrA as a potential target for the development of novel anti-tubercular agents and provide a biochemical framework for the identification of small-molecule inhibitors interfering with the NER activity in M. tuberculosis.  相似文献   
103.
Viruses use a wide range of strategies to modulate the host immune response. The human gammaherpesvirus EBV, causative agent of infectious mononucleosis and several malignant tumors, encodes proteins that subvert immune responses, notably those mediated by T cells. Less is known about EBV interference with innate immunity, more specifically at the level of TLR-mediated pathogen recognition. The viral dsDNA sensor TLR9 is expressed on B cells, a natural target of EBV infection. Here, we show that EBV particles trigger innate immune signaling pathways through TLR9. Furthermore, using an in vitro system for productive EBV infection, it has now been possible to compare the expression of TLRs by EBV(-) and EBV(+) human B cells during the latent and lytic phases of infection. Several TLRs were found to be differentially expressed either in latently EBV-infected cells or after induction of the lytic cycle. In particular, TLR9 expression was profoundly decreased at both the RNA and protein levels during productive EBV infection. We identified the EBV lytic-phase protein BGLF5 as a protein that contributes to downregulating TLR9 levels through RNA degradation. Reducing the levels of a pattern-recognition receptor capable of sensing the presence of EBV provides a mechanism by which the virus could obstruct host innate antiviral responses.  相似文献   
104.
105.

Background

Children receiving Total Body Irradiation (TBI) in preparation for Hematopoietic Stem Cell Transplantation (HSCT) are at risk for Growth Hormone Deficiency (GHD), which sometimes severely compromises their Final Height (FH). To better represent the impact of such therapies on growth we apply a mathematical model, which accounts both for the gompertzian-like growth trend and the hormone-related ‘spurts’, and evaluate how the parameter values estimated on the children undergoing TBI differ from those of the matched normal population.

Methods

25 patients long-term childhood lymphoblastic and myeloid acute leukaemia survivors followed at Pediatric Onco-Hematology, Stem Cell Transplantation and Cellular Therapy Division, Regina Margherita Children’s Hospital (Turin, Italy) were retrospectively analysed for assessing the influence of TBI on their longitudinal growth and for validating a new method to estimate the GH therapy effects. Six were treated with GH therapy after a GHD diagnosis.

Results

We show that when TBI was performed before puberty overall growth and pubertal duration were significantly impaired, but such growth limitations were completely reverted in the small sample (6 over 25) of children who underwent GH replacement therapies.

Conclusion

Since in principle the model could account for any additional growth ‘spurt’ induced by therapy, it may become a useful ‘simulation’ tool for paediatricians for comparing the predicted therapy effectiveness depending on its timing and dosage.
  相似文献   
106.
Cerebral cavernous malformations (CCMs) are vascular abnormalities that may cause seizures, intracerebral haemorrhages, and focal neurological deficits. Familial form shows an autosomal dominant pattern of inheritance with incomplete penetrance and variable clinical expression. Three genes have been identified causing familial CCM: KRIT1/CCM1, MGC4607/CCM2, and PDCD10/CCM3. Aim of this study is to report additional PDCD10/CCM3 families poorly described so far which account for 10-15% of hereditary cerebral cavernous malformations. Our group investigated 87 consecutive Italian affected individuals (i.e. positive Magnetic Resonance Imaging) with multiple/familial CCM through direct sequencing and Multiplex Ligation-Dependent Probe Amplification (MLPA) analysis. We identified mutations in over 97.7% of cases, and PDCD10/CCM3 accounts for 13.1%. PDCD10/CCM3 molecular screening revealed four already known mutations and four novel ones. The mutated patients show an earlier onset of clinical manifestations as compared to CCM1/CCM2 mutated patients. The study of further families carrying mutations in PDCD10/CCM3 may help define a possible correlation between genotype and phenotype; an accurate clinical follow up of the subjects would help define more precisely whether mutations in PDCD10/CCM3 lead to a characteristic phenotype.  相似文献   
107.

Background

Abnormalities of vascular smooth muscle cells (VSMCs) contribute to development of vascular disease. Atrial natriuretic peptide (ANP) exerts important effects on VSMCs. A common ANP molecular variant (T2238C/αANP) has recently emerged as a novel vascular risk factor.

Objectives

We aimed at identifying effects of CC2238/αANP on viability, migration and motility in coronary artery SMCs, and the underlying signaling pathways.

Methods and Results

Cells were exposed to either TT2238/αANP or CC2238/αANP. At the end of treatment, cell viability, migration and motility were evaluated, along with changes in oxidative stress pathway (ROS levels, NADPH and eNOS expression), on Akt phosphorylation and miR21 expression levels. CC2238/αANP reduced cell vitality, increased apoptosis and necrosis, increased oxidative stress levels, suppressed miR21 expression along with consistent changes of its molecular targets (PDCD4, PTEN, Bcl2) and of phosphorylated Akt levels. As a result of increased oxidative stress, CC2238/αANP markedly stimulated cell migration and increased cell contraction. NPR-C gene silencing with specific siRNAs restored cell viability, miR21 expression, and reduced oxidative stress induced by CC2238/αANP. The cAMP/PKA/CREB pathway, driven by NPR-C activation, significantly contributed to both miR21 and phosphoAkt reduction upon CC2238/αANP. miR21 overexpression by mimic-hsa-miR21 rescued the cellular damage dependent on CC2238/αANP.

Conclusions

CC2238/αANP negatively modulates viability through NPR-C/cAMP/PKA/CREB/miR21 signaling pathway, and it augments oxidative stress leading to increased migratory and vasoconstrictor effects in coronary artery SMCs. These novel findings further support a damaging role of this common αANP variant on vessel wall and its potential contribution to acute coronary events.  相似文献   
108.
Alzheimer’s disease (AD) is the most common age-related neurodegenerative disorder. Increased Aβ production plays a fundamental role in the pathogenesis of the disease and BACE1, the protease that triggers the amyloidogenic processing of APP, is a key protein and a pharmacological target in AD. Changes in neuronal activity have been linked to BACE1 expression and Aβ generation, but the underlying mechanisms are still unclear. We provide clear evidence for the role of Casein Kinase 2 in the control of activity-driven BACE1 expression in cultured primary neurons, organotypic brain slices, and murine AD models. More specifically, we demonstrate that neuronal activity promotes Casein Kinase 2 dependent phosphorylation of the translation initiation factor eIF4B and this, in turn, controls BACE1 expression and APP processing. Finally, we show that eIF4B expression and phosphorylation are increased in the brain of APPPS1 and APP-KI mice, as well as in AD patients. Overall, we provide a definition of a mechanism linking brain activity with amyloid production and deposition, opening new perspectives from the therapeutic standpoint.Subject terms: Kinases, Alzheimer''s disease, Neuronal physiology, Pathogenesis  相似文献   
109.
A molecular simulation scheme, called Leap-dynamics, that provides efficient sampling of protein conformational space in solution is presented. The scheme is a combined approach using a fast sampling method, imposing conformational 'leaps' to force the system over energy barriers, and molecular dynamics (MD) for refinement. The presence of solvent is approximated by a potential of mean force depending on the solvent accessible surface area. The method has been successfully applied to N-acetyl-L-alanine-N-methylamide (alanine dipeptide), sampling experimentally observed conformations inaccessible to MD alone under the chosen conditions. The method predicts correctly the increased partial flexibility of the mutant Y35G compared to native bovine pancreatic trypsin inhibitor. In particular, the improvement over MD consists of the detection of conformational flexibility that corresponds closely to slow motions identified by nuclear magnetic resonance techniques.  相似文献   
110.
Cell suspension cultures of Beta vulgaris L., treated with calciumchelators or untreated, were used to characterize pyndine nucleotide-dependentdiaphorases of microsomes. The microsomal activity of NADH-dependentduroquinone reductase from cultures treated with 10 mM Na2EGTAfor 24 h increased by a factor of 1.8 with respect to controlmicrosomes, and was mainly associated with particles of d=1.17gml–1. NADPH-duroquinone reductase and NADH-ferricyanidereductase activities showed smaller increases. Bacterial protein-lipopolysaccharidecomplexes (prLPS) also promoted the increase of microsomal diaphorases;CaEGTA was Ineffective. EGTA effects on enzymes of supernatantand mitochondria were negligible, although Na2EGTA treatmentinduced cell aggregation and strong acidification of the medium. When microsomes from control cultures were solubilized with1% LPC and fractionated in high-efficiency gel permeation columns(FPLC) the diaphorase activities were found associated to threemajor proteins: (i) NADH-specific quinone reductase (NADH-QR)of 340 kDa; (ii) pyndine nucleotide-nonspecific quinone reductase(NAD(P)H-QR) of 85 kDa also having ferricyanide reductase activity;(iii) NADH-specific ferricyanide reductase (NADH-FCR) of 38kDa. The microsomes from EGTA-treated cells also showed a highlyactive NADH-QR having a larger molecular mass (440 kDa) thanin control cells. NAD(P)H-QR also showed increased activity.We conclude that external Ca2+ chelation induces changes indehydrogenase components in microsomes. Furthermore, prLPS probablyexert part of their effect on plants through Ca2+ chelation. Key words: Beta vulgaris, cell cultures, calcium chelators, diaphorase, NAD(P)H-dehydrogenase, lipopolysaccharide, EGTA, quinone reductase  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号