首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17125篇
  免费   1289篇
  国内免费   6篇
  18420篇
  2023年   135篇
  2022年   116篇
  2021年   282篇
  2020年   219篇
  2019年   236篇
  2018年   431篇
  2017年   409篇
  2016年   513篇
  2015年   674篇
  2014年   732篇
  2013年   1034篇
  2012年   1354篇
  2011年   1348篇
  2010年   835篇
  2009年   670篇
  2008年   1103篇
  2007年   1133篇
  2006年   1082篇
  2005年   990篇
  2004年   971篇
  2003年   903篇
  2002年   786篇
  2001年   190篇
  2000年   246篇
  1999年   195篇
  1998年   157篇
  1997年   100篇
  1996年   108篇
  1995年   115篇
  1994年   92篇
  1993年   83篇
  1992年   103篇
  1991年   80篇
  1990年   70篇
  1989年   58篇
  1988年   52篇
  1987年   49篇
  1986年   38篇
  1985年   48篇
  1984年   63篇
  1983年   42篇
  1982年   55篇
  1981年   54篇
  1980年   56篇
  1979年   46篇
  1978年   49篇
  1977年   40篇
  1976年   42篇
  1975年   42篇
  1974年   30篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
121.
After cell entry, HIV undergoes rapid transport toward the nucleus using microtubules and microfilaments. Neither the cellular cytoplasmic components nor the viral proteins that interact to mediate transport have yet been identified. Using a yeast two-hybrid screen, we identified four cytoskeletal components as putative interaction partners for HIV-1 p24 capsid protein: MAP1A, MAP1S, CKAP1, and WIRE. Depletion of MAP1A/MAP1S in indicator cell lines and primary human macrophages led to a profound reduction in HIV-1 infectivity as a result of impaired retrograde trafficking, demonstrated by a characteristic accumulation of capsids away from the nuclear membrane, and an overall defect in nuclear import. MAP1A/MAP1S did not impact microtubule network integrity or cell morphology but contributed to microtubule stabilization, which was shown previously to facilitate infection. In addition, we found that MAP1 proteins interact with HIV-1 cores both in vitro and in infected cells and that interaction involves MAP1 light chain LC2. Depletion of MAP1 proteins reduced the association of HIV-1 capsids with both dynamic and stable microtubules, suggesting that MAP1 proteins help tether incoming viral capsids to the microtubular network, thus promoting cytoplasmic trafficking. This work shows for the first time that following entry into target cells, HIV-1 interacts with the cytoskeleton via its p24 capsid protein. Moreover, our results support a role for MAP1 proteins in promoting efficient retrograde trafficking of HIV-1 by stimulating the formation of stable microtubules and mediating the association of HIV-1 cores with microtubules.  相似文献   
122.

Background

Breast cancer is a heterogeneous disease that is not totally eradicated by current therapies. The classification of breast tumors into distinct molecular subtypes by gene profiling and immunodetection of surrogate markers has proven useful for tumor prognosis and prediction of effective targeted treatments. The challenge now is to identify molecular biomarkers that may be of functional relevance for personalized therapy of breast tumors with poor outcome that do not respond to available treatments. The Mitochondrial Tumor Suppressor (MTUS1) gene is an interesting candidate whose expression is reduced in colon, pancreas, ovary and oral cancers. The present study investigates the expression and functional effects of MTUS1 gene products in breast cancer.

Methods and Findings

By means of gene array analysis, real-time RT-PCR and immunohistochemistry, we show here that MTUS1/ATIP3 is significantly down-regulated in a series of 151 infiltrating breast cancer carcinomas as compared to normal breast tissue. Low levels of ATIP3 correlate with high grade of the tumor and the occurrence of distant metastasis. ATIP3 levels are also significantly reduced in triple negative (ER- PR- HER2-) breast carcinomas, a subgroup of highly proliferative tumors with poor outcome and no available targeted therapy. Functional studies indicate that silencing ATIP3 expression by siRNA increases breast cancer cell proliferation. Conversely, restoring endogenous levels of ATIP3 expression leads to reduced cancer cell proliferation, clonogenicity, anchorage-independent growth, and reduces the incidence and size of xenografts grown in vivo. We provide evidence that ATIP3 associates with the microtubule cytoskeleton and localizes at the centrosomes, mitotic spindle and intercellular bridge during cell division. Accordingly, live cell imaging indicates that ATIP3 expression alters the progression of cell division by promoting prolonged metaphase, thereby leading to a reduced number of cells ungergoing active mitosis.

Conclusions

Our results identify for the first time ATIP3 as a novel microtubule-associated protein whose expression is significantly reduced in highly proliferative breast carcinomas of poor clinical outcome. ATIP3 re-expression limits tumor cell proliferation in vitro and in vivo, suggesting that this protein may represent a novel useful biomarker and an interesting candidate for future targeted therapies of aggressive breast cancer.  相似文献   
123.
Spatial distribution in mammals, and thereby home range size, is influenced by many different factors including body size, sex, age, reproductive status, season, availability of forage, availability of water, fragmentation of landscape, trophic level and intra- and inter-specific competition. Using linear mixed models, we looked for factors shaping the variation in size of spring-summer and winter home ranges for 51 radio-collared adult female roe deer at Trois Fontaines forest, Champagne–Ardenne, France (1996–2005). Home range size of females was larger in winter than in spring–summer, decreased with age, and decreased with increasing quality. Females in low quality areas adjusted the size of their home range to include more patches of habitat so that all female deer obtained similar amounts of food resources (total biomass of 6.73±2.34 tons (mean±SE) for each home range). Such adjustments of home range size in response to patchiness of resources led to marked between-female variation in home range size. Our results demonstrate that roe deer females have different tactics of habitat use according to spatial variations in habitat quality so that females get similar food resources in highly productive environments such as the Trois Fontaines forest.  相似文献   
124.
125.
BACKGROUND AND AIMS: Witches' broom disease is caused by the hemibiotrophic basidiomycete Moniliophthora perniciosa, and is one of the most important diseases of cacao in the western hemisphere. Because very little is known about the global process of such disease development, expressed sequence tags (ESTs) were used to identify genes expressed during the Theobroma cacao-Moniliophthora perniciosa interaction. METHODS: Two cDNA libraries corresponding to the resistant (RT) and susceptible (SP) cacao-M. perniciosa interactions were constructed from total RNA, using the DB SMART Creator cDNA library kit (Clontech). Clones were randomly selected, sequenced from the 5' end and analysed using bioinformatics tools including in silico analysis of the differential gene expression. KEY RESULTS: A total of 6884 ESTs were generated from the RT and SP cDNA libraries. These ESTs were composed of 2585 singlets and 341 contigs for a total of 2926 non-redundant sequences. The redundancy of the libraries was low and their specificity high when compared with the few other cacao libraries already published. Sequence analysis allowed the assignment of a putative functional category for 54 % of sequences, whereas approx. 22 % of sequences corresponded to unknown function and approx. 24 % of sequences did not show any significant similarity with other proteins present in the database. Despite the similar overall distribution of the sequences in functional categories between the two libraries, qualitative differences were observed. Genes involved during the defence response to pathogen infection or in programmed cell death were identified, such as pathogenesis related-proteins, trypsin inhibitor or oxalate oxidase, and some of them showed an in silico differential expression between the resistant and the susceptible interactions. CONCLUSIONS: As far as is known this is the first EST resource from the cacao-M. perniciosa interaction and it is believed that it will provide a significant contribution to the understanding of the molecular mechanisms of the resistance and susceptibility of cacao to M. perniciosa, to develop strategies to control witches' broom, and as a source of polymorphism for molecular marker development and marker-assisted selection.  相似文献   
126.
A pressure probe technique and an osmotic swelling assay were used to compare water transport properties between growing and non-growing tissues of leaf three of barley. The epidermis was analysed in planta by pressure probe, whereas (predominantly) mesophyll protoplasts were analysed by osmotic swelling. Hydraulic conductivity (Lp) and, by implication, water permeability (Pf) of epidermal cells was 31% higher in the leaf elongation zone (Lp=0.5+/-0.2 microm s-1 MPa-1; Pf=65+/-25 microm s-1; means+/-SD of n=17 cells) than in the, non-growing, emerged leaf zone (Lp=0.4+/-0.1 microm s-1 MPa-1; Pf=50+/-15 microm s-1; n=24; P<0.05). Similarly, water permeability of mesophyll protoplasts was by 55% higher in the elongation compared with emerged leaf zone (Pf=13+/-1 microm s-1 compared with 8+/-1 microm s-1; n=57 and 36 protoplasts, respectively; P<0.01). Within the leaf elongation zone, a small population of larger-sized protoplasts could be distinguished. These protoplasts, which originated most likely from parenchymateous bundle sheath or midrib parenchyma cells, had a three-fold higher water permeability (P<0.001) as mesophyll protoplasts. The effect on Lp and Pf of known aquaporin inhibitors was tested with the pressure probe (Au+, Ag+, Hg2+, phloretin) and the osmotic swelling assay (phloretin). Only phloretin, when applied to protoplasts in the swelling assay caused an average decrease in Pf, but the effect varied between isolations. Technical approaches and cell-type and growth-specific differences in water transport properties are discussed.  相似文献   
127.
Brown SP  Taddei F 《PloS one》2007,2(7):e593
An implicit assumption underpins basic models of the evolution of cooperation, mutualism and altruism: The benefits (or pay-offs) of cooperation and defection are defined by the current frequency or distribution of cooperators. In social dilemmas involving durable public goods (group resources that can persist in the environment-ubiquitous from microbes to humans) this assumption is violated. Here, we examine the consequences of relaxing this assumption, allowing pay-offs to depend on both current and past numbers of cooperators. We explicitly trace the dynamic of a public good created by cooperators, and define pay-offs in terms of the current public good. By raising the importance of cooperative history in determining the current fate of cooperators, durable public goods cause novel dynamics (e.g., transient increases in cooperation in Prisoner's Dilemmas, oscillations in Snowdrift Games, or shifts in invasion thresholds in Stag-hunt Games), while changes in durability can transform one game into another, by moving invasion thresholds for cooperation or conditions for coexistence with defectors. This enlarged view challenges our understanding of social cheats. For instance, groups of cooperators can do worse than groups of defectors, if they inherit fewer public goods, while a rise in defectors no longer entails a loss of social benefits, at least not in the present moment (as highlighted by concerns over environmental lags). Wherever durable public goods have yet to reach a steady state (for instance due to external perturbations), the history of cooperation will define the ongoing dynamics of cooperators.  相似文献   
128.
Optimized plant-microbe bioremediation processes in which the plant initiates the metabolism of xenobiotics and releases the metabolites in the rhizosphere to be further degraded by the rhizobacteria is a promising alternative to restore contaminated sites in situ. However, such processes require that plants produce the metabolites that bacteria can readily oxidize. The biphenyl dioxygenase is the first enzyme of the bacterial catabolic pathway involved in the degradation of polychlorinated biphenyls. This enzyme consists of three components: the two sub-unit oxygenase (BphAE) containing a Rieske-type iron-sulfur cluster and a mononuclear iron center, the Rieske-type ferredoxin (BphF), and the FAD-containing ferredoxin reductase (BphG). In this work, based on analyses with Nicotiana benthamiana plants transiently expressing the biphenyl dioxygenase genes from Burkholderia xenovorans LB400 and transgenic Nicotiana tabacum plants transformed with each of these four genes, we have shown that each of the three biphenyl dioxygenase components can be produced individually as active protein in tobacco plants. Therefore, when BphAE, BphF, and BphG purified from plant were used to catalyze the oxygenation of 4-chlorobiphenyl, detectable amounts of 2,3-dihydro-2, 3-dihydroxy-4'-chlorobiphenyl were produced. This suggests that creating transgenic plants expressing simultaneously all four genes required to produce active biphenyl dioxygenase is feasible.  相似文献   
129.
The RegB endoribonuclease participates in the bacteriophage T4 life cycle by favoring early messenger RNA breakdown. RegB specifically cleaves GGAG sequences found in intergenic regions, mainly in translation initiation sites. Its activity is very low but can be enhanced up to 100-fold by the ribosomal 30 S subunit or by ribosomal protein S1. RegB has no significant sequence homology to any known protein. Here we used NMR to solve the structure of RegB and map its interactions with two RNA substrates. We also generated a collection of mutants affected in RegB function. Our results show that, despite the absence of any sequence homology, RegB has structural similarities with two Escherichia coli ribonucleases involved in mRNA inactivation on translating ribosomes: YoeB and RelE. Although these ribonucleases have different catalytic sites, we propose that RegB is a new member of the RelE/YoeB structural and functional family of ribonucleases specialized in mRNA inactivation within the ribosome.  相似文献   
130.
Abstract: As cerebral neurons express the dopamine D1 receptor positively coupled with adenylyl cyclase, together with the D3 receptor, we have investigated in a heterologous cell expression system the relationships of cyclic AMP with D3 receptor signaling pathways. In NG108-15 cells transfected with the human D3 receptor cDNA, dopamine, quinpirole, and other dopamine receptor agonists inhibited cyclic AMP accumulation induced by forskolin. Quinpirole also increased mitogenesis, assessed by measuring [3H]thymidine incorporation. This effect was blocked partially by genistein, a tyrosine kinase inhibitor. Forskolin enhanced by 50–75% the quinpirole-induced [3H]thymidine incorporation. This effect was maximal with 100 n M forskolin, occurred after 6–16 h, was reproduced by cyclic AMP-permeable analogues, and was blocked by a protein kinase A inhibitor. Forskolin increased D3 receptor expression up to 135%, but only after 16 h and at concentrations of >1 µ M . Thus, in this cell line, the D3 receptor uses two distinct signaling pathways: it efficiently inhibits adenylyl cyclase and induces mitogenesis, an effect possibly involving tyrosine phosphorylation. Activation of the cyclic AMP cascade potentiates the D3 receptor-mediated mitogenic response, through phosphorylation by a cyclic AMP-dependent kinase of a yet unidentified component. Hence, transduction of the D3 receptor can involve both opposite and synergistic interactions with cyclic AMP.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号