首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9144篇
  免费   797篇
  国内免费   2篇
  9943篇
  2023年   36篇
  2022年   28篇
  2021年   74篇
  2020年   48篇
  2019年   55篇
  2018年   154篇
  2017年   162篇
  2016年   243篇
  2015年   418篇
  2014年   414篇
  2013年   563篇
  2012年   741篇
  2011年   706篇
  2010年   458篇
  2009年   368篇
  2008年   578篇
  2007年   596篇
  2006年   583篇
  2005年   599篇
  2004年   574篇
  2003年   519篇
  2002年   467篇
  2001年   55篇
  2000年   73篇
  1999年   92篇
  1998年   113篇
  1997年   67篇
  1996年   71篇
  1995年   78篇
  1994年   57篇
  1993年   71篇
  1992年   91篇
  1991年   59篇
  1990年   43篇
  1989年   48篇
  1988年   36篇
  1987年   44篇
  1986年   30篇
  1985年   33篇
  1984年   45篇
  1983年   27篇
  1982年   41篇
  1981年   41篇
  1980年   51篇
  1979年   33篇
  1978年   44篇
  1977年   29篇
  1976年   35篇
  1975年   26篇
  1974年   23篇
排序方式: 共有9943条查询结果,搜索用时 15 毫秒
841.
The relative importance of contemporary and historical processes is central for understanding biodiversity patterns. While several studies show that past conditions can partly explain the current biodiversity patterns, the role of history remains elusive. We reconstructed palaeo‐drainage basins under lower sea level conditions (Last Glacial Maximum) to test whether the historical connectivity between basins left an imprint on the global patterns of freshwater fish biodiversity. After controlling for contemporary and past environmental conditions, we found that palaeo‐connected basins displayed greater species richness but lower levels of endemism and beta diversity than did palaeo‐disconnected basins. Palaeo‐connected basins exhibited shallower distance decay of compositional similarity, suggesting that palaeo‐river connections favoured the exchange of fish species. Finally, we found that a longer period of palaeo‐connection resulted in lower levels of beta diversity. These findings reveal the first unambiguous results of the role played by history in explaining the global contemporary patterns of biodiversity.  相似文献   
842.
Oncoprotein E6 is essential for oncogenesis induced by human papillomaviruses (HPVs). The solution structure of HPV16-E6 C-terminal domain reveals a zinc binding fold. A model of full-length E6 is proposed and analyzed in the context of HPV evolution. E6 appears as a chameleon protein combining a conserved structural scaffold with highly variable surfaces participating in generic or specialized HPV functions. We investigated surface residues involved in two specialized activities of high-risk genital HPV E6: p53 tumor suppressor degradation and nucleic acid binding. Screening of E6 surface mutants identified an in vivo p53 degradation-defective mutant that fails to recruit p53 to ubiquitin ligase E6AP and restores high p53 levels in cervical carcinoma cells by competing with endogeneous E6. We also mapped the nucleic acid binding surface of E6, the positive potential of which correlates with genital oncogenicity. E6 structure-function analysis provides new clues for understanding and counteracting the complex pathways of HPV-mediated pathogenesis.  相似文献   
843.
In the Drosophila circadian clock, the CLOCK/CYCLE complex activates the period and timeless genes that negatively feedback on CLOCK/CYCLE activity. The 24-h pace of this cycle depends on the stability of the clock proteins. RING-domain E3 ubiquitin ligases have been shown to destabilize PERIOD or TIMELESS. Here we identify a clock function for the circadian trip (ctrip) gene, which encodes a HECT-domain E3 ubiquitin ligase. ctrip expression in the brain is mostly restricted to clock neurons and its downregulation leads to long-period activity rhythms in constant darkness. This altered behaviour is associated with high CLOCK levels and persistence of phosphorylated PERIOD during the subjective day. The control of CLOCK protein levels does not require PERIOD. Thus, CTRIP seems to regulate the pace of the oscillator by controlling the stability of both the activator and the repressor of the feedback loop.  相似文献   
844.
845.
Under stress conditions, some microalgae up-regulate certain biosynthetic pathways, leading to the accumulation of specific compounds. For example, changing nutrient composition can induce stress in algae’s physiological activities, which may trigger an intense increase in carotenoid production. In this study, the change of photosynthetic functions and carotenoid production in the green microalga Scenedesmus sp. was investigated when algal cultures were exposed to conditions including limited nitrogen content with the addition of sodium acetate. Microalgal cultures were treated for 18 days under higher irradiance conditions. We observed a decrease of chlorophyll content induced concomitantly with a decline of photosystem II and I photochemistry. At the same time, an important increase in carotenoid content was detected. By using high-performance liquid chromatographic analysis, we found that the secondary carotenoids astaxanthin and canthaxanthin were accumulated compared to controls. During the process of carotenoid accumulation, chlorophyll degradation was found in addition to a strong decrease in photosynthetic electron transport. Such changes may be associated with the structural reorganization of the photosynthetic apparatus and can be a useful indicator of secondary carotenoid accumulation in algal cultures.  相似文献   
846.
847.
During chronic kidney disease (CKD), solutes called uremic solutes, accumulate in blood and tissues of patients. We developed an HPLC method for the simultaneous determination of several uremic solutes of clinical interest in biological fluids: phenol (Pol), indole-3-acetic acid (3-IAA), p-cresol (p-C), indoxyl sulfate (3-INDS) and p-cresol sulfate (p-CS). These solutes were separated by ion-pairing HPLC using an isocratic flow and quantified with a fluorescence detection. The mean serum concentrations of 3-IAA, 3-INDS and p-CS were 2.12, 1.03 and 13.03 μM respectively in healthy subjects, 3.21, 17.45 and 73.47 μM in non hemodialyzed stage 3-5 CKD patients and 5.9, 81.04 and 120.54 μM in hemodialyzed patients (stage 5D). We found no Pol and no p-C in any population. The limits of quantification for 3-IAA, 3-INDS, and p-CS were 0.83, 0.72, and 3.2 μM respectively. The within-day CVs were between 1.23 and 3.12% for 3-IAA, 0.98 and 2% for 3-INDS, and 1.25 and 3.01% for p-CS. The between-day CVs were between 1.78 and 5.48% for 3-IAA, 1.45 and 4.54% for 3-INDS, and 1.19 and 6.36% for p-CS. This HPLC method permits the simultaneous and quick quantification of several uremic solutes for daily analysis of large numbers of samples.  相似文献   
848.
We have assessed the impact of increasing oxygen availability on cellular phenotype expression of rabbit proximal tubule cells in primary culture developed with variable glucose and/or insulin contents. To mitigate hypoxia at the cell/medium interface, cells were shaken for the whole culture duration and their expressed phenotype was compared with those expressed by static cultures. O2 and CO2 tensions were kept constant in the incubator atmosphere. Glycolysis and gluconeogenesis pathways, detoxication system, and mitochondrial, apical and basolateral membrane marker enzyme activities were assessed. This study showed that the induction of glycolysis which appear in primary cultures of proximal tubule cells may be partially prevented by continuously shaking the cultures. This effect was more marked in the presence of glucose, suggesting better substrate oxidation in shaken cultures.  相似文献   
849.
850.
Friedreich ataxia is the most common recessive neurodegenerative disease and is caused by reduced expression of mitochondrial frataxin. Frataxin depletion causes impairment in iron-sulfur cluster and heme biosynthesis, disruption of iron homeostasis and hypersensitivity to oxidants. Currently no pharmacological treatment blocks disease progression, although antioxidant therapies proved to benefit patients. We show that sensitivity of yeast frataxin-deficient cells to hydrogen peroxide is partially mediated by the metacaspase. Metacaspase deletion in frataxin-deficient cells results in recovery of antioxidant capacity and heme synthesis. In addition, our results suggest that metacaspase is associated with mitochondrial respiration, intracellular redox control and genomic stability.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号