首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28106篇
  免费   2009篇
  国内免费   5篇
  2023年   179篇
  2022年   296篇
  2021年   608篇
  2020年   449篇
  2019年   515篇
  2018年   800篇
  2017年   762篇
  2016年   1048篇
  2015年   1415篇
  2014年   1558篇
  2013年   1918篇
  2012年   2214篇
  2011年   2200篇
  2010年   1366篇
  2009年   1159篇
  2008年   1586篇
  2007年   1570篇
  2006年   1461篇
  2005年   1217篇
  2004年   1130篇
  2003年   964篇
  2002年   868篇
  2001年   494篇
  2000年   499篇
  1999年   377篇
  1998年   195篇
  1997年   144篇
  1996年   132篇
  1995年   119篇
  1994年   111篇
  1993年   102篇
  1992年   180篇
  1991年   181篇
  1990年   144篇
  1989年   155篇
  1988年   137篇
  1987年   116篇
  1986年   106篇
  1985年   108篇
  1984年   104篇
  1983年   92篇
  1982年   81篇
  1981年   80篇
  1980年   67篇
  1979年   84篇
  1978年   70篇
  1976年   73篇
  1975年   77篇
  1974年   80篇
  1973年   64篇
排序方式: 共有10000条查询结果,搜索用时 109 毫秒
961.
EcoHealth - This study analyzed the evolution of socioeconomic, sanitary, and personal factors as well as spatiotemporal changes in the prevalence of helminthiasis and giardiasis in urban Amazonian...  相似文献   
962.
963.
The minimization of costs in the distillation step of lignocellulosic ethanol production requires the use of a high solids loading during the enzymatic hydrolysis to obtain a more concentrated glucose liquor. However, this increase in biomass can lead to problems including increased mass and heat transfer resistance, decreased cellulose conversion, and increased apparent viscosity with the associated increase in power consumption. The use of fed-batch operation offers a promising way to circumvent these problems. In this study, one batch and four fed-batch strategies for solids and/or enzyme feeding during the enzymatic hydrolysis of sugarcane bagasse were evaluated. Determinations of glucose concentration, power consumption, and apparent viscosity were made throughout the experiments, and the different strategies were compared in terms of energy efficiency (mass of glucose produced according to the energy consumed). The best energy efficiency was obtained for the strategy in which substrate and enzyme were added simultaneously (0.35 kgglucose kWh?1). This value was 52 % higher than obtained in batch operation.  相似文献   
964.
The whole-cell immobilization on chitosan matrix was evaluated. Bacillus sp., as producer of CGTase, was grown in solid-state and batch cultivation using three types of starches (cassava, potato and cornstarch). Biomass growth and substrate consumption were assessed by flow cytometry and modified phenol–sulfuric acid assays, respectively. Qualitative analysis of CGTase production was determined by colorless area formation on solid culture containing phenolphthalein. Scanning electron microscopy (SEM) analysis demonstrated that bacterial cells were immobilized on chitosan matrix efficiently. Free cells reached very high numbers during batch culture while immobilized cells maintained initial inoculum concentration. The maximum enzyme activity achieved by free cells was 58.15 U ml?1 (36 h), 47.50 U ml?1 (36 h) and 68.36 U ml?1 (36 h) on cassava, potato and cornstarch, respectively. CGTase activities for immobilized cells were 82.15 U ml?1 (18 h) on cassava, 79.17 U ml?1 (12 h) on potato and 55.37 U ml?1 (in 6 h and max 77.75 U ml?1 in 36 h) on cornstarch. Application of immobilization technique increased CGTase activity significantly. The immobilized cells produced CGTase with higher activity in a shorter fermentation time comparing to free cells.  相似文献   
965.
Contractions of uterine smooth muscle cells consist of a chain of physiological processes. These contractions provide the required force to expel the fetus from the uterus. The inclusion of these physiological processes is, therefore, imperative when studying uterine contractions. In this study, an electro-chemo-mechanical model to replicate the excitation, activation, and contraction of uterine smooth muscle cells is developed. The presented modeling strategy enables efficient integration of knowledge about physiological processes at the cellular level to the organ level. The model is implemented in a three-dimensional finite element setting to simulate uterus contraction during labor in response to electrical discharges generated by pacemaker cells and propagated within the myometrium via gap junctions. Important clinical factors, such as uterine electrical activity and intrauterine pressure, are predicted using this simulation. The predictions are in agreement with clinically measured data reported in the literature. A parameter study is also carried out to investigate the impact of physiologically related parameters on the uterine contractility.  相似文献   
966.
A marine symbiosis has been recently discovered between prymnesiophyte species and the unicellular diazotrophic cyanobacterium UCYN-A. At least two different UCYN-A phylotypes exist, the clade UCYN-A1 in symbiosis with an uncultured small prymnesiophyte and the clade UCYN-A2 in symbiosis with the larger Braarudosphaera bigelowii. We targeted the prymnesiophyte–UCYN-A1 symbiosis by double CARD-FISH (catalyzed reporter deposition-fluorescence in situ hybridization) and analyzed its abundance in surface samples from the MALASPINA circumnavigation expedition. Our use of a specific probe for the prymnesiophyte partner allowed us to verify that this algal species virtually always carried the UCYN-A symbiont, indicating that the association was also obligate for the host. The prymnesiophyte–UCYN-A1 symbiosis was detected in all ocean basins, displaying a patchy distribution with abundances (up to 500 cells ml−1) that could vary orders of magnitude. Additional vertical profiles taken at the NE Atlantic showed that this symbiosis occupied the upper water column and disappeared towards the Deep Chlorophyll Maximum, where the biomass of the prymnesiophyte assemblage peaked. Moreover, sequences of both prymnesiophyte partners were searched within a large 18S rDNA metabarcoding data set from the Tara-Oceans expedition around the world. This sequence-based analysis supported the patchy distribution of the UCYN-A1 host observed by CARD-FISH and highlighted an unexpected homogeneous distribution (at low relative abundance) of B. bigelowii in the open ocean. Our results demonstrate that partners are always in symbiosis in nature and show contrasted ecological patterns of the two related lineages.  相似文献   
967.
Elucidating the factors determining the occurrence of florivorous organisms is an essential step for comprehending arthropod–plant interactions, especially when considering florivores that use flowers/inflorescences as microhabitats. In this study, we characterize the interaction between florivorous thrips (Thysanoptera) and Palicourea rigida (Rubiaceae), a distylous hummingbird-pollinated shrub. We investigated the relative role of different factors in determining thrips occurrence in the flower and inflorescence microhabitats. Furthermore, we experimentally examined the protective role of corolla influencing thrips exploration of floral buds. Frankliniella musaeperda (Thripidae) was the only species recorded on P. rigida, feeding on floral tissue, pollen and nectar. Thrips occurrence was not related to distyly, but rather to floral stage. Open flowers presented the highest abundance of thrips, followed by senescent flowers and then buds. The experimental opening of buds translated in increased thrips occurrence, indicating that F. musaeperda manage to explore the microhabitat offered by the floral chamber, as long as there is an opening in the corolla. In inflorescences, thrips abundance was negatively related to the number of ants visiting extrafloral nectaries. We found that the marked difference between floral morphs of distylous plants is not necessarily reflected in the abundance of florivores. Thrips seek for floral cavities, preferentially those with fresh tissue, which may confer nutrient-rich food and protection. Buds also provide this; however, the enclosed petals are an effective barrier against F. musaeperda entrance. At inflorescence scale, presence of mutualistic ants in high numbers can drive away these flower-feeding insects. Despite the abundance of thrips in the flowers, there was no evidence of any functional relationship, either of pollination for flowers or of breeding for insects. We demonstrate here that in the flower/inflorescence microhabitat, structural and biotic factors play a key role in the exploitation and occupation by insect florivores.  相似文献   
968.
The identification of a causal mutation is essential for molecular diagnosis and clinical management of many genetic disorders. However, even if next-generation exome sequencing has greatly improved the detection of nucleotide changes, the biological interpretation of most exonic variants remains challenging. Moreover, particular attention is typically given to protein-coding changes often neglecting the potential impact of exonic variants on RNA splicing. Here, we used the exon 10 of MLH1, a gene implicated in hereditary cancer, as a model system to assess the prevalence of RNA splicing mutations among all single-nucleotide variants identified in a given exon. We performed comprehensive minigene assays and analyzed patient’s RNA when available. Our study revealed a staggering number of splicing mutations in MLH1 exon 10 (77% of the 22 analyzed variants), including mutations directly affecting splice sites and, particularly, mutations altering potential splicing regulatory elements (ESRs). We then used this thoroughly characterized dataset, together with experimental data derived from previous studies on BRCA1, BRCA2, CFTR and NF1, to evaluate the predictive power of 3 in silico approaches recently described as promising tools for pinpointing ESR-mutations. Our results indicate that ΔtESRseq and ΔHZEI-based approaches not only discriminate which variants affect splicing, but also predict the direction and severity of the induced splicing defects. In contrast, the ΔΨ-based approach did not show a compelling predictive power. Our data indicates that exonic splicing mutations are more prevalent than currently appreciated and that they can now be predicted by using bioinformatics methods. These findings have implications for all genetically-caused diseases.  相似文献   
969.
Parasitic infections by Leishmania parasites remains a severe public health problem, especially in developing countries where it is highly endemic. Chemotherapy still remains a first option for the treatment of those diseases, despite the fact that available drugs exhibit a variety of shortcomings. Thus, innovative, less toxic more affordable and effective antileishmanial agents are urgently needed. The marine environment holds an immeasurable bio- and chemical diversity, being a valuable source of natural products with therapeutic potential. As invertebrates comprise about 60 % of all marine organisms, bioprospecting this class of organisms for antileishmanial properties may unravel unique and selective hit molecules. In this context, this review covers results on the literature of marine invertebrate extracts and pure compounds evaluated against Leishmania parasites mainly by in vitro methods. It comprises results obtained from the phyla Porifera, Cnidaria, Bryozoa (Ectoprota), Mollusca, Echinodermata, Annelida, Cetnophora, Platyhelminthes, sub phyla Crustacea (phylum Arthropoda) and Tunicata (phylum Chordata). Moreover, structure–activity relationships and possible mechanisms of action are mentioned, whenever available information is provided. About 70 species of marine invertebrates belonging to seven different phyla are included in this work. Besides a variety of crude extracts, a total of 140 pure compounds was tested against different Leishmania species. Although the research on the antileishmanial potential of marine invertebrates is in its early beginnings, promising results have been achieved that encourage further research. As more extracts and compounds are being screened, the possibility of finding active and selective antileishmanial molecules increases, rising new hope in the search for new treatments against leishmaniases.  相似文献   
970.
Conformational diversity of the native state plays a central role in modulating protein function. The selection paradigm sustains that different ligands shift the conformational equilibrium through their binding to highest-affinity conformers. Intramolecular vibrational dynamics associated to each conformation should guarantee conformational transitions, which due to its importance, could possibly be associated with evolutionary conserved traits. Normal mode analysis, based on a coarse-grained model of the protein, can provide the required information to explore these features. Herein, we present a novel procedure to identify key positions sustaining the conformational diversity associated to ligand binding. The method is applied to an adequate refined dataset of 188 paired protein structures in their bound and unbound forms. Firstly, normal modes most involved in the conformational change are selected according to their corresponding overlap with structural distortions introduced by ligand binding. The subspace defined by these modes is used to analyze the effect of simulated point mutations on preserving the conformational diversity of the protein. We find a negative correlation between the effects of mutations on these normal mode subspaces associated to ligand-binding and position-specific evolutionary conservations obtained from multiple sequence-structure alignments. Positions whose mutations are found to alter the most these subspaces are defined as key positions, that is, dynamically important residues that mediate the ligand-binding conformational change. These positions are shown to be evolutionary conserved, mostly buried aliphatic residues localized in regular structural regions of the protein like β-sheets and α-helix.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号