首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   71篇
  免费   2篇
  2021年   1篇
  2014年   1篇
  2010年   1篇
  2009年   3篇
  2008年   5篇
  2007年   1篇
  2006年   4篇
  2005年   3篇
  2004年   13篇
  2003年   9篇
  2002年   9篇
  2001年   5篇
  2000年   1篇
  1999年   3篇
  1998年   1篇
  1997年   1篇
  1995年   1篇
  1994年   1篇
  1992年   4篇
  1991年   1篇
  1990年   3篇
  1989年   1篇
  1981年   1篇
排序方式: 共有73条查询结果,搜索用时 875 毫秒
21.
Down syndrome (DS) is the most common human chromosomal abnormality caused by an extra copy of chromosome 21 and characterized by somatic anomalies and mental retardation. The phenotype of DS is thought to result from overexpression of genes encoded on chromosome 21. Although several studies reported mRNA levels of genes localized on chromosome 21, mRNA data cannot be simply extrapolated to protein levels. Furthermore, most protein data have been generated using immunochemical methods. In this study we investigated expression of three proteins (cystathionine beta-synthase (CBS), pyridoxal kinase (PDXK), ES1 protein homolog, mitochondrial precursor (ES1)) whose genes are encoded on chromosome 21 in fetal DS (n = 8; mean gestational age of 19.8 +/- 2.0 weeks) and controls (n = 7; mean gestational age of 18.8 +/- 2.2 weeks) brains (cortex) using proteomic technologies. Two-dimensional electrophoresis (2-DE) with subsequent in-gel digestion of spots and matrix-assisted laser desorption ionization (MALDI) spectroscopic identification followed by quantification of spots with specific software was applied. Subsequent quantitative analysis of CBS and PDXK revealed levels comparable between DS and controls. By contrast, ES1 was two-fold elevated (P < 0.01) in fetal DS brain. This protein shows significant homology with the E. coli SCRP-27A/ELBB and zebrafish ES1 protein and contains a potential targeting sequence to mitochondria in its N-terminal region. Based on the assumption that structural similarities reflect functional relationship, it may be speculated that ES1 is serving a basic function in mitochondria. Although no function of the human ES1 protein is known yet, ES1 may be a candidate protein involved in the pathogenesis of the brain deficit in DS.  相似文献   
22.
The serum proteome of Equus caballus   总被引:1,自引:0,他引:1  
We constructed a reference two-dimensional protein map for horse (Equus caballus) serum. The serum proteins were separated by two-dimensional electrophoresis (2-DE); 29 different gene products were identified. Proteins represented by 25 spots/spot groups were identified by tandem nanoelectrospray mass spectrometry (MS), four by matrix-assisted laser desorption ionization time-of-flight (TOF) MS and one was sequenced by TOF-TOF technology. The identities of four proteins were deduced by similarity to the human plasma protein database. In selected cases, i.e. the immunoglobulins, immunoblotting with specific antibodies provided additional information about the respective proteins. Albumin was detected as the full-length protein and as fragments of various sizes. Spots representing products of different mass and charge were also detected for alpha1-antitrypsin, haptoglobin and transthyretin. Thus, despite the fact that the Equus caballus genome is incompletely characterized, we were able to identify almost all moderate to high abundance proteins stained in the serum 2-DE pattern.  相似文献   
23.
We applied proteomic technologies to analyze the human fetal brain. Such an analysis could provide us with important information on the development of the early neuronal life in healthy and diseased states. The proteins from the cerebellum of control subjects were analyzed by two-dimensional electrophoresis and identified by matrix-assisted laser desorption/ionization-mass spectrometry on the basis of peptide mass fingerprinting, following in-gel digestion with trypsin. Approximately 3,000 spots, excised from three two-dimensional gels, were analyzed which resulted in the identification of about 1,700 proteins that were the products of 437 different genes. About half of them are enzyme subunits and are mainly localized in the cytosol and in mitochondria. The most frequently identified proteins in the various gels were heat shock proteins, house-keeping enzymes, such as ATP synthase chains, protein disulfide isomerase, and structural proteins, such as tubulin chains. Seven gene products were identified for the first time in the fetal brain. The other proteins had also been detected in other human samples which were analyzed in our laboratory. Most proteins were represented by multiple spots. In average, about 3-5 spots were detected per gene product. The fetal brain database includes proteins with important functions and also with unknown functions and represents today one of the largest two-dimensional databases for higher eukaryotic proteomes. It may be a useful tool in the investigation of protein changes in neurodegenerative diseases early in life.  相似文献   
24.
Moesin is a member of the ERM family and is involved in plasma membrane-actin cytoskeleton cross-linking, resulting cell adhesion, shape, and motility. Because moesin was shown to be highly expressed in growth cones and moesin/radixin suppression led to impaired structure and function of this key element in brain development, we tested the ERM family, ezrin, radixin, and moesin, in fetal Down syndrome (DS) cortex at the early second trimester. We applied two-dimensional gel electrophoresis with subsequent MALDI detection and identification of protein spots followed by quantification with specific software. Moesin was shown to be significantly and manifold reduced in fetal DS brain, whereas reduction of ezrin and radixin did not reach statistical significance. We therefore propose the involvement of moesin in developmental impairment of DS brain, including deteriorated arborisation, neuritic outgrowth, and neuronal migration. Furthermore, decreased moesin is the second F-actin bundling protein, besides drebrin, that is manifold reduced in fetal DS brain.  相似文献   
25.
26.
Nitric oxide is implicated in modulation of memory and pharmacological as well as genetic inhibition of neuronal nitric oxide synthase (nNOS) leads to impaired cognitive function. We therefore decided to study learning and memory functions and cognitive flexibility in the Morris water maze (MWM) in 1-month-old male mice lacking nNOS (nNOS KO). Hippocampal protein profiling was carried out to possibly link protein derangement to impaired cognitive function. Two-dimensional gel electrophoresis with in-gel digestion of spots and subsequent MALDI-TOF identification of proteins and quantification of proteins using specific software was applied. In the memory as well as in the relearning task of the MWM, most of the nNOS KO failed to find the submerged platform within a given time. Proteomic evaluation of hippocampus, the main anatomical structure computing cognitive functions, revealed aberrant expression of a synaptosomal associated protein of the exocytotic machinery (NSF), glycolytic enzymes, chaperones 78 kDa glucose-regulated protein, T-complex protein 1; the signaling structure guanine nucleotide-binding protein G(I)/G(S)/G(T) and heterogeneous nuclear ribonucleoprotein H of the splicing machinery. We conclude that nNOS knockout mice show impaired spatial performance in the MWM, a finding that may be either linked to direct effects of nNOS/NO and/or to specific hippocampal protein derangements.  相似文献   
27.
Low-abundance gene products are of interest in proteomic studies, because they are probably involved in disease-related changes and their altered levels or modifications may carry significant biological information. Detection of low-abundance proteins of a proteome is one of the major limitations of proteomics and a scientific challenge. We investigated the changes in the levels of low-abundance rat brain cytosolic proteins after administration of kainic acid, a potent neurotoxin and excitatory amino acid. The cytosolic proteins from controls and animals treated with kainic acid were fractionated on an ion-exchange column. The fractions collected were analyzed by 2D electrophoresis, and the proteins with altered levels were identified by matrix-assisted laser desorption ionization or ion-spray MS. We found a manifold decrease in annexin VII, heat-shock cofactor HOP/p60 and SP-22 and a manifold increase in heparin-binding protein p30. The results suggest, respectively, the involvement of an apoptotic pathway, recruitment of the heat-shock protein machinery, generation of an antioxidant response, and, probably, induction of repair mechanisms. Three of the four proteins with altered levels had not been previously detected in the cytosolic fraction, and detection of the altered levels was possible only after the protein-enriching step.  相似文献   
28.
The rat brain hippocampus proteome   总被引:5,自引:0,他引:5  
The hippocampus is crucial in memory storage and retrieval and plays an important role in stress response. In humans, the CA1 area of hippocampus is one of the first brain areas to display pathology in Alzheimer's disease. A comprehensive analysis of the hippocampus proteome has not been accomplished yet. We applied proteomics technologies to construct a two-dimensional database for rat brain hippocampus proteins. Hippocampus samples from eight months old animals were analyzed by two-dimensional electrophoresis and the proteins were identified by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. The database comprises 148 different gene products, which are in the majority enzymes, structural proteins and heat shock proteins. It also includes 39 neuron specific gene products. The database may be useful in animal model studies of neurological disorders.  相似文献   
29.
We analyzed the high affinity receptor for IFN-gamma of Raji cells and human placenta by combining Scatchard analysis, cross-linking experiments, and receptor purification. Only one high affinity binding site was found, Kd 2.1 X 10(-10). The receptor is a 90-kDa glycoprotein. However, multiple cross-linked products of 110 kDa to about 250 kDa could be generated and proteins of 90, 70, and 50 kDa could be obtained upon purification. These proteins all contained the same 90-kDa receptor, or part of it. We suggest that extensive cross-linking and/or proteolysis may explain many of the conflicting results published thus far. The extracellular domain of the 90-kDa receptor protein was highly resistant to digestion with trypsin or proteinase K. Trypsin digestion neither affected the number of binding sites per cell, nor the Kd for IFN-gamma. A cluster of sites for different proteases was found in the intracellular domain. The 50-kDa fragment created by trypsin digestion had the same characteristics as the isolated 50-kDa receptor fragment. It contained the IFN-gamma binding site and the receptor's extracellular and amino-terminal domain. N-linked glycosylation contributed about 15 kDa to its molecular mass, of which 4 kDa were attributable to sialic acid residues. O-Linked glycosylation was not detected. The number of binding sites per cell and the Kd for IFN-gamma were not affected by the presence or absence of N-linked glycosylation. The receptor contained at least one critical disulfide bridge and the reduced receptor could be reactivated in vitro.  相似文献   
30.
Down syndrome (DS) is the most common genetic disorder with mental retardation and a host of deranged proteins has already been described. Protein hunting leads to rapid accumulation of aberrant proteins and proteomics methods not only allow unambiguous identification of proteins, they are also a powerful tools to identify new or predicted proteins. We applied two-dimensional gel electrophoresis with in-gel digestion of proteins and subsequent MALDI-TOF mass-spectrometrical identification and quantification of spots using specific software on cortical brain samples from 7 controls and 7 samples from fetal DS at the early second trimester. Nine hypothetical proteins were identified: three of them (4833418L03Rik protein Q9D614, mitochondrial inner membrane protein Q16891 and Nit protein 2 Q8WUF0) were significantly and about doublefold reduced in fetal DS brain. Hypothetical proteins CGI 99, FLJ10463, 70 kDa WD-repeat tumor rejection antigen homolog, KSRP, Hypothetical protein 49.6 kDa and Elongin A were comparable between groups. Domain analysis of deranged structures revealed a t_SNARE domain for the Rik protein, indicating involvement of this protein in the exocytotic-synaptic machinery impaired in DS, a CN hydrolase domain for Nit protein 2, possibly reflecting aberrant nitrilase-related metabolism and handling and an inner mitochondrial protein, extending knowledge on the mitochondrial deficit in in fetal DS early in life.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号