首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   134篇
  免费   7篇
  2023年   2篇
  2022年   3篇
  2021年   2篇
  2020年   3篇
  2019年   3篇
  2018年   3篇
  2017年   2篇
  2016年   2篇
  2015年   11篇
  2014年   7篇
  2013年   12篇
  2012年   7篇
  2011年   9篇
  2010年   7篇
  2009年   5篇
  2008年   12篇
  2007年   9篇
  2006年   4篇
  2005年   9篇
  2004年   4篇
  2003年   5篇
  2002年   7篇
  2001年   2篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   2篇
  1994年   2篇
  1992年   1篇
  1984年   1篇
  1978年   1篇
  1974年   1篇
排序方式: 共有141条查询结果,搜索用时 15 毫秒
121.
Jasmonic acid (JA) is a signalling compound with a key role in both stress and development in plants, and is reported to elicit the emission of volatile organic compounds (VOCs). Here we studied the dynamics of such emissions and the linkage with photosynthetic rates and stomatal conductance. We sprayed JA on leaves of the Mediterranean tree species Quercus ilex and measured the photosynthetic rates, stomatal conductances, and emissions and uptake of VOCs using proton transfer reaction mass spectrometry and gas chromatography after a dark-light transition. Jasmonic acid treatment delayed the induction of photosynthesis and stomatal conductance by approx. 20 min, and decreased them 24 h after spraying. Indications were found of both stomatal and nonstomatal limitations of photosynthesis. Monoterpene emissions were enhanced (20-30%) after JA spraying. Jasmonic acid also increased methyl salicylate (MeSa) emissions (more than twofold) 1 h after treatment, although after 24 h this effect had disappeared. Formaldehyde foliar uptake decreased significantly 24 h after JA treatment. Both biotic and abiotic stresses can thus affect plant VOC emissions through their strong impact on JA levels. Jasmonic acid-mediated increases in monoterpene and MeSa emissions might have a protective role when confronting biotic and abiotic stresses.  相似文献   
122.
A supratype analysis of a North Italian population was performed, using 16 polymorphisms in the HLA region spanning the HLA-A-DP segment. Fourteen supratypes were identified, mostly corresponding to those found in other Caucasiod populations. The degree of their conservation both within the B-DR/DQ region and in the regions telomeric and centromeric from HLA-A and DP was evaluated and linkage disequilibria among several DR and DP alleles were identified. Notably, the degree of association with DP increased when the DR marker was part of a conserved B-DR/DQ supratype. These data are relevant to the definition of the genetic structure of the population and to the prediction of probabilities of histocompatibility matching between unrelated individuals.  相似文献   
123.
Endogenously produced nitric oxide is a recognized regulator of physiological lung events, such as a neurotransmitter and a proinflammatory mediator. We tested the differences between chronic and acute nitric oxide inhibition by N(omega)-nitro-L-arginine methyl ester (L-NAME) treatment in lung mechanics, inflammation, and airway remodeling in an experimental asthma model in guinea pigs. Both acute and chronic L-NAME treatment reduced exhaled nitric oxide in sensitized animals (P < 0.001). Chronic L-NAME treatment increased baseline and maximal responses after antigen challenge of respiratory system resistance and reduced peribronchial edema and mononuclear cells airway infiltration (P < 0.05). Acute administration of L-NAME increased maximal values of respiratory system elastance and reduced mononuclear cells and eosinophils in airway wall (P < 0.05). Chronic ovalbumin exposure resulted in airway wall thickening due to an increase in collagen content (P < 0.005). Chronic nitric oxide inhibition increased collagen deposition in airway wall in sensitized animals (P < 0.05). These data support the hypothesis that in this model nitric oxide acts as a bronchodilator, mainly in proximal airways. Furthermore, chronic nitric oxide inhibition was effective in reducing edema and mononuclear cells in airway wall. However, airway eosinophilic inflammation was unaltered by chronic L-NAME treatment. In addition, nitric oxide inhibition upregulates collagen deposition in airway walls.  相似文献   
124.
Filella I  Peñuelas J 《Oecologia》2003,137(1):51-61
We studied the interspecific and intraspecific variation in the development of water stress and in the use of different water and nitrogen sources during the spring (wet season) and summer (dry season) in a shrub community in NE Spain. We measured shoot water potentials, stable deuterium isotopic composition (D) of xylem sap, leaf mass per area, leaf N and C concentrations, gas exchange, leaf 13C, and leaf 15N of the dominant species (Quercus coccifera, Arbutus unedo, Pistacia lentiscus, Erica multiflora, Globularia alypum). The D, the 13C and the shoot water potential values showed diurnal, seasonal, intraspecific and interspecific variation in the source and use of water. There was also seasonal, intraspecific and interspecific variation in the foliar 15N and N concentrations. In summer, some species (A. unedo, P. lentiscus and E. multiflora) presented significantly different D values in morning and afternoon measurements likely indicating that they used different sources of water during the day, and a dual root system in these species. We conjecture that dew may be one of these water sources. Species predawn water potential was negatively correlated with species xylem water D. There was also a positive correlation between 13C and D in P. lentiscus, species for which we took additional samples from nearby sites. These results suggest that the access to water from greater depths allowed the maintenance of more favourable plant water supply. Multivariate principal component analysis based on the studied hydrological and isotope variables clearly separated the seasons (wet spring and dry summer) and the species. The species resulted separated according to their evolutionary history (Pre-Mediterranean and Mediterranean) and the associated root and functional traits. These results show water (and nitrogen) partitioning among coexisting species of the same functional type (Mediterranean woody shrubs). They also show the great intraspecific plasticity of responses to resource availability.  相似文献   
125.
Diurnal and seasonal fluctuations in the photosynthetic performance and water relations of two co-occurring Mediterranean shrubs, Erica multiflora and Globularia alypum were monitored throughout two consecutive years at Garraf Natural Park in north-east Spain. Leaf gas exchange rates, chlorophyll fluorescence and shoot water potentials were measured once each season. Leaf nitrogen and carbon concentrations, leaf delta13C and delta15N and specific leaf area (SLA) were also measured once a year (August) on well developed mature leaves. Globularia alypum experienced seasonal fluctuations in their water potential, with the lowest values recorded in summer, whereas E. multiflora did not show significant differences in water potential among seasons. Moreover, lower water potentials were found in G. alypum than in E. multiflora throughout the entire study, suggesting that the latter behaved as a drought-avoiding species, whereas the former tolerated lower water potentials. In both species, maximum leaf gas exchange rates were observed in autumn and secondarily in spring; in contrast, photosynthetic and transpiration rates reached absolute minima in summer. The stronger fluctuations in water potential and leaf gas exchange rates found in G. alypum compared to E. multiflora, suggest that G. alypum is, sensu Levitt (1980), a water spender, whereas E. multiflora is a water conservative. This hypothesis is further supported by a higher integrated water-use efficiency (higher delta13C values) and a higher degree of sclerophylly (lower SLA) in E. multiflora in comparison with G. alypum. Globularia alypum showed higher leaf gas exchange rates and higher predawn potential photochemical efficiency (Fv/Fm) than E. multiflora during most of the study. In spring and autumn, predawn Fv/Fm values were within the optimal range, whereas chronic photoinhibition in summer and winter was detected in both species. However, whereas both species could maintain positive photosynthetic rates in winter, frequent negative values were found in summer, suggesting higher levels of stress during the drought period. These results together with the high correlations that were found between the net photosynthetic rates and several parameters of water availability (accumulated rainfall, soil moisture or midday water potential) provided further evidence of the key role of water availability in the regulation of the photosynthetic rates in these Mediterranean species. Warmer and drier conditions in future decades, as a consequence of climate change, may alter the present, slight competitive advantage of G. alypum and the fitness of both shrub species within semi-arid Mediterranean environments.  相似文献   
126.
Aspirin (ASA) and dexamethasone (DEX) are widely used anti-inflammatory agents yet their mechanism(s) for blocking polymorphonuclear neutrophil (PMN) accumulation at sites of inflammation remains unclear. Here, we report that inhibition of PMN infiltration by ASA and DEX is a property shared by aspirin-triggered lipoxins (ATL) and the glucocorticoid-induced annexin 1 (ANXA1)-derived peptides that are both generated in vivo and act at the lipoxin A(4) receptor (ALXR/FPRL1) to halt PMN diapedesis. These structurally diverse ligands specifically interact directly with recombinant human ALXR demonstrated by specific radioligand binding and function as well as immunoprecipitation of PMN receptors. In addition, the combination of both ATL and ANXA1-derived peptides limited PMN infiltration and reduced production of inflammatory mediators (that is, prostaglandins and chemokines) in vivo. Together, these results indicate functional redundancies in endogenous lipid and peptide anti-inflammatory circuits that are spatially and temporally separate, where both ATL and specific ANXA1-derived peptides act in concert at ALXR to downregulate PMN recruitment to inflammatory loci.  相似文献   
127.

Background

Recently, the effects of nanogratings have been investigated on PC12 with respect to cell polarity, neuronal differentiation, migration, maturation of focal adhesions and alignment of neurites.

Methodology/Principal Findings

A synergistic procedure was used to study the mechanism of alignment of PC12 neurites with respect to the main direction of nanogratings. Finite Element simulations were used to qualitatively assess the distribution of stresses at the interface between non-spread growth cones and filopodia, and to study their dependence on filopodial length and orientation. After modelling all adhesions under non-spread growth cone and filopodial protrusions, the values of local stress maxima resulted from the length of filopodia. Since the stress was assumed to be the main triggering cause leading to the increase and stabilization of filopodia, the position of the local maxima was directly related to the orientation of neurites. An analytic closed form equation was then written to quantitatively assess the average ridge width needed to achieve a given neuritic alignment (R2 = 0.96), and the alignment course, when the ridge depth varied (R2 = 0.97). A computational framework was implemented within an improved free Java environment (CX3D) and in silico simulations were carried out to reproduce and predict biological experiments. No significant differences were found between biological experiments and in silico simulations (alignment, p = 0.3571; tortuosity, p = 0.2236) with a standard level of confidence (95%).

Conclusions/Significance

A mechanism involved in filopodial sensing of nanogratings is proposed and modelled through a synergistic use of FE models, theoretical equations and in silico simulations. This approach shows the importance of the neuritic terminal geometry, and the key role of the distribution of the adhesion constraints for the cell/substrate coupling process. Finally, the effects of the geometry of nanogratings were explicitly considered in cell/surface interactions thanks to the analytic framework presented in this work.  相似文献   
128.
Immunity contributes to arterial inflammation during atherosclerosis. Oxidized low-density lipoproteins induce an autoimmune response characterized by specific antibodies and immune complexes in atherosclerotic patients. We hypothesize that specific Fcγ receptors for IgG constant region participate in atherogenesis by regulating the inflammatory state of lesional macrophages. In vivo we examined the role of activating Fcγ receptors in atherosclerosis progression using bone marrow transplantation from mice deficient in γ-chain (the common signaling subunit of activating Fcγ receptors) to hyperlipidemic mice. Hematopoietic deficiency of Fcγ receptors significantly reduced atherosclerotic lesion size, which was associated with decreased number of macrophages and T lymphocytes, and increased T regulatory cell function. Lesions of Fcγ receptor deficient mice exhibited increased plaque stability, as evidenced by higher collagen and smooth muscle cell content and decreased apoptosis. These effects were independent of changes in serum lipids and antibody response to oxidized low-density lipoproteins. Activating Fcγ receptor deficiency reduced pro-inflammatory gene expression, nuclear factor-κB activity, and M1 macrophages at the lesion site, while increasing anti-inflammatory genes and M2 macrophages. The decreased inflammation in the lesions was mirrored by a reduced number of classical inflammatory monocytes in blood. In vitro, lack of activating Fcγ receptors attenuated foam cell formation, oxidative stress and pro-inflammatory gene expression, and increased M2-associated genes in murine macrophages. Our study demonstrates that activating Fcγ receptors influence the macrophage phenotypic balance in the artery wall of atherosclerotic mice and suggests that modulation of Fcγ receptor-mediated inflammatory responses could effectively suppress atherosclerosis.  相似文献   
129.
To relate exposure to adverse health effects, it is necessary to know where particles in the submicron range deposit in the respiratory tract. The possibly higher vulnerability of children requires specific inhalation studies. However, radio-aerosol deposition experiments involving children are rare because of ethical restrictions related to radiation exposure. Thus, an in vivo study was conducted using three baboons as a child respiratory tract model to assess regional deposition patterns (thoracic region vs. extrathoracic region) of radioactive polydisperse aerosols ([d16–d84], equal to [0.15 µm–0.5 µm], [0.25 µm–1 µm], or [1 µm–9 µm]). Results clearly demonstrated that aerosol deposition within the thoracic region and the extrathoraic region varied substantially according to particle size. High deposition in the extrathoracic region was observed for the [1 µm–9 µm] aerosol (72%±17%). The [0.15 µm–0.5 µm] aerosol was associated almost exclusively with thoracic region deposition (84%±4%). Airborne particles in the range of [0.25 µm–1 µm] showed an intermediate deposition pattern, with 49%±8% in the extrathoracic region and 51%±8% in the thoracic region. Finally, comparison of baboon and human inhalation experiments for the [1 µm–9 µm] aerosol showed similar regional deposition, leading to the conclusion that regional deposition is species-independent for this airborne particle sizes.  相似文献   
130.
The role of oxidative post-translational modifications of human superoxide dismutase 1 (hSOD1) in the amyotrophic lateral sclerosis (ALS) pathology is an attractive hypothesis to explore based on several lines of evidence. Among them, the remarkable stability of hSOD1WT and several of its ALS-associated mutants suggests that hSOD1 oxidation may precede its conversion to the unfolded and aggregated forms found in ALS patients. The bicarbonate-dependent peroxidase activity of hSOD1 causes oxidation of its own solvent-exposed Trp32 residue. The resulting products are apparently different from those produced in the absence of bicarbonate and are most likely specific for simian SOD1s, which contain the Trp32 residue. The aims of this work were to examine whether the bicarbonate-dependent peroxidase activity of hSOD1 (hSOD1WT and hSOD1G93A mutant) triggers aggregation of the enzyme and to comprehend the role of the Trp32 residue in the process. The results showed that Trp32 residues of both enzymes are oxidized to a similar extent to hSOD1-derived tryptophanyl radicals. These radicals decayed to hSOD1-N-formylkynurenine and hSOD1-kynurenine or to a hSOD1 covalent dimer cross-linked by a ditryptophan bond, causing hSOD1 unfolding, oligomerization, and non-amyloid aggregation. The latter process was inhibited by tempol, which recombines with the hSOD1-derived tryptophanyl radical, and did not occur in the absence of bicarbonate or with enzymes that lack the Trp32 residue (bovine SOD1 and hSOD1W32F mutant). The results support a role for the oxidation products of the hSOD1-Trp32 residue, particularly the covalent dimer, in triggering the non-amyloid aggregation of hSOD1.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号