首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   257篇
  免费   21篇
  2023年   1篇
  2022年   2篇
  2021年   8篇
  2020年   4篇
  2019年   2篇
  2018年   10篇
  2017年   3篇
  2016年   8篇
  2015年   15篇
  2014年   14篇
  2013年   17篇
  2012年   20篇
  2011年   24篇
  2010年   8篇
  2009年   10篇
  2008年   18篇
  2007年   14篇
  2006年   17篇
  2005年   9篇
  2004年   12篇
  2003年   7篇
  2002年   7篇
  2001年   6篇
  2000年   4篇
  1999年   4篇
  1998年   2篇
  1997年   2篇
  1996年   1篇
  1995年   3篇
  1993年   2篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   5篇
  1987年   2篇
  1983年   1篇
  1978年   2篇
  1976年   5篇
  1975年   1篇
  1974年   1篇
  1969年   2篇
排序方式: 共有278条查询结果,搜索用时 15 毫秒
151.
IGF1R is emerging as an important gene in the pathogenesis of many solid and haematological cancers and its over-expression has been reported as frequently associated with aggressive disease and chemotherapy resistance. In this study we performed an investigation of the role of IGF1R expression in a large and representative prospective series of 217 chronic lymphocytic leukaemia (CLL) patients enrolled in the multicentre O-CLL1 protocol (clinicaltrial.gov #NCT00917540). High IGF1R gene expression was significantly associated with IGHV unmutated (IGHV-UM) status (p<0.0001), high CD38 expression (p<0.0001), trisomy 12 (p<0.0001), and del(11)(q23) (p=0.014). Interestingly, higher IGF1R expression (p=0.002) characterized patients with NOTCH1 mutation (c.7541_7542delCT), identified in 15.5% of cases of our series by next generation sequencing and ARMS-PCR. Furthermore, IGF1R expression has been proven as an independent prognostic factor associated with time to first treatment in our CLL prospective cohort. These data suggest that IGF1R may play an important role in CLL biology, in particular in aggressive CLL clones characterized by IGHV-UM, trisomy 12 and NOTCH1 mutation.  相似文献   
152.
153.
A detection scheme is described by which the histamine contents of biological samples can be established. The scheme is based on the use of methylamine dehydrogenase (MADH) which converts primary amines into the corresponding aldehydes and ammonia. The generated reducing equivalents are subsequently transferred to the physiological partner of MADH, amicyanin, which thereby is converted from the oxidized blue-colored form into the reduced colorless form. The change in absorption is detected by monitoring the fluorescence of a covalently attached Cy5 dye label whose fluorescence is (partly) quenched by Förster resonance energy transfer (FRET) to the Cu-site of the amicyanin. The quenching efficiency and, thereby, the label fluorescence, depends on the oxidation state of the amicyanin. When adding histamine to the assay mixture the proportionality between the substrate concentration and the observed rate of the fluorescence increase has enabled this assay as a sensor method with high sensitivity. The MADH and amicyanin composition can be tuned so that the sensor can be adapted over a broad range of histamine concentrations (13 nM–225 μM). The lowest concentration detected so far is 13 nM of histamine. The sensor retained its linearity up to 225 μM with a coefficient of variation of 11% for 10 measurements of 100 nM histamine in a 100 μL sample volume. The use of a label fluorescing around 660 nm helps circumventing the interference from background fluorescence in biological samples. The sensor has been tested to detect histamine in biological fluids such as fish extracts and blood serum.  相似文献   
154.
Human reproduction is complex and prone to failure. Though causes of miscarriage remain unclear, adenosine, a proangiogenic nucleoside, may help determine pregnancy outcome. Although adenosine receptor (AR) expression has been characterized in euploid pregnancies, no information is available for aneuploidies, which, as prone to spontaneous abortion (SA), are a potential model for shedding light on the mechanism regulating this event. AR expression was investigated in 71 first-trimester chorionic villi (CV) samples and cultured mesenchymal cells (MC) from euploid and TR21 pregnancies, one of the most frequent autosomal aneuploidy, with a view to elucidating their potential role in the modulation of vascular endothelial growth factor (VEGF) and nitric oxide (NO). Compared to euploid cells, reduced A1 and A2B expression was revealed in TR21 CV and MCs. The non-selective adenosine agonist 5′-N-ethylcarboxamidoadenosine (NECA) increased NO, by activating, predominantly, A1AR and A2AAR through a molecular pathway involving hypoxia-inducible-factor-1 (HIF-1α), and increased VEGF, mainly through A2B. In conclusion the adenosine transduction cascade appears to be disturbed in TR21 through reduced expression of A2B and A1ARs. These anomalies may be implicated in complications such as fetal growth restriction, malformation and/or SA, well known features of aneuploid pregnancies. Therefore A1 and A2BARs could be potential biomarkers able to provide an early indication of SA risk and their stimulation may turn out to improve fetoplacental perfusion by increasing NO and VEGF.  相似文献   
155.
Human cytomegalovirus is a ubiquitous human pathogen that is the leading viral cause of birth defects. It also causes significant morbidity and mortality in both chemically and virally immunosuppressed individuals. Recent studies have begun to elucidate the interplay between this virus and its host cell on a molecular level. The interactions begin upon contact with the cell membrane, involve multiple processes including cell signaling, cell-cycle control and immune response mechanisms, and culminate in a productive infection.  相似文献   
156.
Juvenile American alligators exhibited variable rates of gularpumping to the scents of different meats, indicating that theydistinguish among foods by airborne chemical cues. A chloroformextract of beef elicited more gular pumps than did chloroformalone, demonstrating that alligators detect meat-derived lipidsby olfaction.  相似文献   
157.
Environmental constraints disturb plant metabolism and are often associated with photosynthetic impairments and yield reductions. Among them, low positive temperatures are of up most importance in tropical plant species, namely in Coffea spp. in which some acclimation ability has been reported. To further explain cold tolerance, the impacts on photosynthetic functioning and the expression of photosynthetic-related genes were analyzed. The experiments were carried out along a period of slow cold imposition (to allow acclimation), after chilling (4 °C) exposure and in the following rewarming period, using 1.5-year-old coffee seedlings of 5 genotypes with different cold sensitivity: Coffea canephora cv. Apoatã, Coffea arabica cv. Catuaí, Coffea dewevrei and 2 hybrids, Icatu (C. arabica × C. canephora) and Piatã (C. dewevrei × C. arabica). All genotypes suffered a significant leaf area loss only after chilling exposure, with Icatu showing the lowest impact, a first indication of a higher cold tolerance, contrasting with Apoatã and C. dewevrei. During cold exposure, net photosynthesis and Chl a fluorescence parameters were strongly affected in all genotypes, but stomatal limitations were not detected. However, the extent of mesophyll limitation, reflecting regulatory mechanisms and/or damage, was genotype dependent. Overnight retention of zeaxanthin was common to Coffea genotypes, but the accumulation of photoprotective pigments was highest in Icatu. That down-regulated photochemical events but efficiently protected the photosynthetic structures, as shown, e.g., by the lowest impacts on Amax and PSI activity and the strongest reinforcement of PSII activity, the latter possibly reflecting the presence of a photoprotective cycle around PSII in Icatu (and Catuaí). Concomitant to these protection mechanisms, Icatu was the sole genotype to present simultaneous upregulation of caCP22, caPI and caCytf, related to, respectively, PSII, PSI and to the complex Cytb6/f, which could promote better repair ability, contributing to the maintenance of efficient thylakoid functioning. We conclude that Icatu showed the best acclimation ability among the studied genotypes, mostly due to a better upregulation of photoprotection and repair mechanisms. We confirmed the presence of important variability in Coffea spp. that could be exploited in breeding programs, which should be assisted by useful markers of cold tolerance, namely the upregulation of antioxidative molecules, the expression of selected genes and PSI sensitivity.  相似文献   
158.
The main causes of familial hypercholesterolemia (FH) are mutations in LDL receptor (LDLR) gene. Functional studies are necessary to demonstrate the LDLR function impairment caused by mutations and would be useful as a diagnostic tool if they allow discrimination between FH patients and controls. In order to identify the best method to detect LDLR activity, we compared continuous Epstein-Barr virus (EBV)-transformed B-lymphocytes and mitogen stimulated T-lymphocytes. In addition, we characterized both novel and known mutations in the LDLR gene. T-lymphocytes and EBV-transformed B-lymphocytes were obtained from peripheral blood of 24 FH patients and 24 control subjects. Functional assays were performed by incubation with fluorescent LDL followed by flow cytometry analysis. Residual LDLR activity was calculated normalizing fluorescence for the mean fluorescence of controls. With stimulated T-lymphocytes we obtained a better discrimination capacity between controls and FH patients compared with EBV-transformed B-lymphocytes as demonstrated by receiver operating characteristic (ROC) curve analysis (the areas under the curve are 1.000 and 0.984 respectively; P < 0.0001 both). The characterization of LDLR activity through T-lymphocytes is more simple and faster than the use of EBV-transformed B-lymphocytes and allows a complete discrimination between controls and FH patients. Therefore the evaluation of residual LDLR activity could be helpful not only for mutation characterization but also for diagnostic purposes.  相似文献   
159.
The eye is a relatively small but very complex organ. It is responsible for vision. Most of its cells are terminally differentiated, and several pathologies affecting those cells lead to vision loss and eventual blindness. Several years ago, a group of cells, located in the limbus, was identified as having the capacity of self-renewal and later on found to feed the renewal of the corneal epithelial layer. Since then, this niche of stem cells has been studied in order to provide clues that can be valuable for the regeneration of ocular structures. The worldwide shortage of donors, increased risk of transmissible diseases and immune rejection and the increased life expectancy, all contributed for the development of strategies to regenerate or repair ocular tissues. In this review we focus on two approaches for ocular regeneration: one based on stem cells and the other one based on tissue engineering strategies, and present examples where these two strategies overlap. We review the sources of cells and tissue engineering strategies for the regeneration of the cornea and of the retina, summarizing the most relevant and recent findings.  相似文献   
160.
Highly homologous B-cell receptors, characterized by non-random combinations of immunoglobulin heavy-chain variable (IGHV) genes and heavy-chain complementarity determining region-3 (HCDR3), are expressed in a recurrent fraction of patients affected by chronic lymphocytic leukemia (CLL). We investigated the IGHV status of 1131 productive IG rearrangements from a panel of 1126 CLL patients from a multicenter Italian study group, and correlated the presence and class of HCDR3 stereotyped subsets with the major cytogenetic alterations evaluated by FISH, molecular prognostic factors, and the time to first treatment (TTFT) of patients with early stage disease (Binet A). Stereotyped HCDR3 sequences were found in 357 cases (31.7%), 231 of which (64.7%) were unmutated. In addition to the previously described subsets, 31 new putative stereotypes subsets were identified. Significant associations between different stereotyped HCDR3 sequences and molecular prognostic factors, such as CD38 and ZAP-70 expression, IGHV mutational status and genomic abnormalities were found. In particular, deletion of 17p13 was significantly represented in stereotype subset #1. Notably, subset #1 was significantly correlated with a substantially reduced TTFT compared to other CLL groups showing unmutated IGHV, ZAP-70 or CD38 positivity and unfavorable cytogenetic lesions including del(17)(p13). Moreover, subset #2 was strongly associated with deletion of 13q14, subsets #8 and #10 with trisomy 12, whereas subset #4 was characterized by the prevalent absence of the common cytogenetic abnormalities. Our data from a large and representative panel of CLL patients indicate that particular stereotyped HCDR3 sequences are associated with specific cytogenetic lesions and a distinct clinical outcome.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号