首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   243篇
  免费   37篇
  2023年   1篇
  2022年   4篇
  2021年   6篇
  2019年   4篇
  2018年   4篇
  2017年   4篇
  2016年   11篇
  2015年   16篇
  2014年   13篇
  2013年   18篇
  2012年   20篇
  2011年   21篇
  2010年   11篇
  2009年   12篇
  2008年   6篇
  2007年   12篇
  2006年   9篇
  2005年   7篇
  2004年   9篇
  2003年   5篇
  2002年   11篇
  2001年   7篇
  2000年   15篇
  1999年   4篇
  1998年   4篇
  1997年   4篇
  1994年   1篇
  1993年   4篇
  1992年   4篇
  1990年   6篇
  1989年   3篇
  1988年   3篇
  1987年   1篇
  1986年   3篇
  1985年   4篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1979年   1篇
  1978年   1篇
  1974年   1篇
  1971年   2篇
  1969年   1篇
  1965年   1篇
  1936年   1篇
  1928年   1篇
排序方式: 共有280条查询结果,搜索用时 708 毫秒
91.
The Scar/WAVE complex drives actin nucleation during cell migration. Interestingly, the same complex is important in forming membrane ruffles during macropinocytosis, a process mediating nutrient uptake and membrane receptor trafficking. Mammalian CYRI-B is a recently described negative regulator of the Scar/WAVE complex by RAC1 sequestration, but its other paralogue, CYRI-A, has not been characterized. Here, we implicate CYRI-A as a key regulator of macropinosome formation and integrin internalization. We find that CYRI-A is transiently recruited to nascent macropinosomes, dependent on PI3K and RAC1 activity. CYRI-A recruitment precedes RAB5A recruitment but follows sharply after RAC1 and actin signaling, consistent with it being a local inhibitor of actin polymerization. Depletion of both CYRI-A and -B results in enhanced surface expression of the α5β1 integrin via reduced internalization. CYRI depletion enhanced migration, invasion, and anchorage-independent growth in 3D. Thus, CYRI-A is a dynamic regulator of macropinocytosis, functioning together with CYRI-B to regulate integrin trafficking.  相似文献   
92.
Foliose Ulva spp. have become increasingly important worldwide for their environmental and financial impacts. A large number of such Ulva species have rapid reproduction and proliferation habits, which explains why they are responsible for Ulva blooms, known as “green tides”, having dramatic negative effects on coastal ecosystems, but also making them attractive for aquaculture applications. Despite the increasing interest in the genus Ulva, particularly on the larger foliose species for aquaculture, their inter‐ and intra‐specific genetic diversity is still poorly described. We compared the cytoplasmic genome (chloroplast and mitochondrion) of 110 strains of large distromatic foliose Ulva from Ireland, Brittany (France), the Netherlands and Portugal. We found six different species, with high levels of inter‐specific genetic diversity, despite highly similar or overlapping morphologies. Genetic variation was as high as 82 SNPs/kb between Ulva pseudorotundata and U. laetevirens, indicating considerable genetic diversity. On the other hand, intra‐specific genetic diversity was relatively low, with only 36 variant sites (0.03 SNPs/kb) in the mitochondrial genome of the 29 Ulva rigida individuals found in this study, despite different geographical origins. The use of next‐generation sequencing allowed for the detection of a single inter‐species hybrid between two genetically closely related species, U. laetevirens, and U. rigida, among the 110 strains analyzed in this study. Altogether, this study represents an important advance in our understanding of Ulva biology and provides genetic information for genomic selection of large foliose strains in aquaculture.  相似文献   
93.
Microbial‐mediated decomposition of soil organic matter (SOM) ultimately makes a considerable contribution to soil respiration, which is typically the main source of CO2 arising from terrestrial ecosystems. Despite this central role in the decomposition of SOM, few studies have been conducted on how climate change may affect the soil microbial community and, furthermore, on how possible climate‐change induced alterations in the ecology of microbial communities may affect soil CO2 emissions. Here we present the results of a seasonal study on soil microbial community structure, SOM decomposition and its temperature sensitivity in two representative Mediterranean ecosystems where precipitation/throughfall exclusion has taken place during the last 10 years. Bacterial and fungal diversity was estimated using the terminal restriction fragment length polymorphism technique. Our results show that fungal diversity was less sensitive to seasonal changes in moisture, temperature and plant activity than bacterial diversity. On the other hand, fungal communities showed the ability to dynamically adapt throughout the seasons. Fungi also coped better with the 10 years of precipitation/throughfall exclusion compared with bacteria. The high resistance of fungal diversity to changes with respect to bacteria may open the controversy as to whether future ‘drier conditions’ for Mediterranean regions might favor fungal dominated microbial communities. Finally, our results indicate that the fungal community exerted a strong influence over the temporal and spatial variability of SOM decomposition and its sensitivity to temperature. The results, therefore, highlight the important role of fungi in the decomposition of terrestrial SOM, especially under the harsh environmental conditions of Mediterranean ecosystems, for which models predict even drier conditions in the future.  相似文献   
94.

Background

CCN2, (a.k.a. connective tissue growth factor and CTGF) has emerged as a regulator of cell migration. While the importance of CCN2 for the fibrotic process in wound healing has been well studied, the effect of CCN2 on keratinocyte function is not well understood. In this study, we investigated the mechanism behind CCN2-driven keratinocyte adhesion and migration.Materials and methods: Adhesion assays were performed by coating wells with 10 μg/ml fibronectin (FN) or phosphate-buffered saline (PBS). Keratinocytes were seeded in the presence or absence of 200 ng/ml CCN2, 5 mmol/l ethylenediaminetetraacetic acid, 10 mmol/l cations, 500 μl arginine–glycine–aspartic acid (RGD), 500 μM arginine–glycine–glutamate–serine (RGES), and 10 μg/ml anti-integrin blocking antibodies. Migration studies were performed using a modified Boyden chamber assay. Quantitative PCR was used to study the effect of CCN2 on integrin subunit mRNA expression. To block intracellular pathways, keratinocytes were pretreated with 20 μM PD98059 (MEK-1 inhibitor) or 20 μM PF573228 (FAK inhibitor) for 60 min prior the addition of CCN2. Western blot was used to measure CCN2, p-ERK1/2, and ERK1/2.Results: CCN2 enhanced keratinocyte adhesion to fibronectin via integrin α5β1. The addition of anti-integrin α5β1 antibodies reduced CCN2-mediated keratinocyte migration. In addition, CCN2 regulated mRNA and protein expression of integrin subunits α5 and β1. CCN2 activated the FAK-MAPK signaling pathway, and pretreatment with MEK1-specific inhibitor PD98059 markedly reduced CCN2-induced keratinocyte migration.Conclusions: Our results demonstrate that CCN2 enhances keratinocyte adhesion and migration through integrin α5β1 and activation of the FAK-MAPK signaling cascade.  相似文献   
95.
This work reports the synthesis and the biological validation of a trisaccharide analogue of the HNK-1 epitope. The 3-O-sulfo-β-d-GlcpA-(1→3)-β-d-Galp-(1→4)-β-d-Glcp-allyl has been prepared by enzymatic glucuronylation of allyl lactoside by an engineered recombinant Escherichia coli strain followed by a chemoselective sulfation. Subsequent covalent attachment of the ozone-oxidised trisaccharide to bovine serum albumin provided a neo-glycoconjugate, which has been interrogated with antibodies specific to the human natural killer carbohydrate epitope HNK-1. ELISA assays confirmed the absolute requirement of the sulfate group for protein recognition and the potential application of this synthetic oligosaccharide as HNK-1 surrogate.  相似文献   
96.
At the onset of winter, warm‐blooded animals inhabiting seasonal environments may remain resident and face poorer climatic conditions, or migrate towards more favourable habitats. While the origins and evolution of migratory choices have been extensively studied, their consequences on avian energy balance and winter survival are poorly understood, especially in species difficult to observe such as seabirds. Using miniaturized geolocators, time‐depth recorders and a mechanistic model, we investigated the migratory strategies, the activity levels and the energy expenditure of the closely‐related, sympatrically breeding Brünnich's guillemots Uria lomvia and common guillemots Uria aalge from Bjørnøya, Svalbard. The two guillemot species from this region present contrasting migratory strategies and wintering quarters: Brünnich's guillemots migrate across the North Atlantic to overwinter off southeast Greenland and Faroe Islands, while common guillemots remain resident in the Barents, the Norwegian and the White Seas. Results show that both species display a marked behavioural plasticity to respond to environmental constraint, notably modulating their foraging effort and diving behaviour. Nevertheless, we provide evidence that the migratory strategy adopted by guillemots can have important consequences for their energy balance. Overall energy expenditure estimated for the non‐breeding season is relatively similar between both species, suggesting that both southward migration and high‐arctic winter residency are energetically equivalent and suitable strategies. However, we also demonstrate that the migratory strategy adopted by Brünnich's guillemots allows them to have reduced daily energy expenditures during the challenging winter period. We therefore speculate that ‘resident’ common guillemots are more vulnerable than ‘migrating’ Brünnich's guillemots to harsh winter environmental conditions.  相似文献   
97.
This study examines the microbial colonization of three fronts of an abandoned dolostone quarry (Redueña, Madrid, Spain) exposed to atmospheric conditions for different time periods since Roman times to the present. Through scanning electron microscopy in backscattered electron mode (SEM-BSE), endolithic colonization was predominantly detected in the most recently exposed front, while in the longer exposed quarry fronts, epilithic forms of growth were most often observed. These observations were confirmed by denaturing gradient gel electrophoresis (DGGE) analysis. Based on the distribution pattern of microbial colonization in the different quarry fronts, we then established a sequence of colonization events that took place over this long time frame. Bioalteration processes related to this sequential colonization were also identified. Characterizing these sequential processes can be useful for interpreting biodeterioration processes in historic dolostone monuments, especially those affecting constructions in the area of the Redueña stone quarry. In a second experimental stage, different biocide treatments were tested on this quarry rock to find the best way to avoid the microbial colonization effects identified. Through combined SEM-BSE/DGGE analysis, the efficacy of several biocides against the microorganisms inhabiting the dolostones was assessed after 4 and 16 months treatment. In general, all treatments were effective at reducing around 80% of the lichen cover, although effects on endolithic lithobiontic communities were dependant on how well the rock surface had been mechanically cleaned prior to treatment and gradually disappeared over time.  相似文献   
98.
Duron O  Fort P  Weill M 《Heredity》2007,98(6):368-374
Wolbachia are maternally inherited endocellular bacteria, widespread in invertebrates and capable of altering several aspects of host reproduction. Cytoplasmic incompatibility (CI) is commonly found in arthropods and induces hatching failure of eggs from crosses between Wolbachia-infected males and uninfected females (or females infected by incompatible strains). Several factors such as bacterial and host genotypes or bacterial density contribute to CI strength and it has been proposed, mostly from Drosophila data, that older males have a lower Wolbachia load in testes which, thus, induces a lighter CI. Here, we challenge this hypothesis using different incompatible Culex pipiens mosquito strains and show that CI persists at the same intensity throughout the mosquito life span. Embryos from incompatible crosses showed even distributions of abortive phenotypes over time, suggesting that host ageing does not reduce the sperm-modification induced by Wolbachia. CI remained constant when sperm was placed in the spermathecae of incompatible females, indicating that sperm modification is also stable over time. The capacity of infected females to rescue CI was independent of age. Last, the density of Wolbachia in whole testes was highly strain-dependent and increased dramatically with age. Taken together, these data stress the peculiarity of the C.pipiens/Wolbachia interaction and suggest that the bacterial dosage model should be rejected in the case of this association.  相似文献   
99.
Wolbachia strains are maternally inherited endosymbiotic bacteria that infect many arthropod species and have evolved several different ways of manipulating their hosts, the most frequent way being cytoplasmic incompatibility (CI). CI leads to embryo death in crosses between infected males and uninfected females as well as in crosses between individuals infected by incompatible Wolbachia strains. The mosquito Culex pipiens exhibits the highest crossing type variability reported so far. Our crossing data support the notion that CI might be driven by at least two distinct genetic units that control the CI functions independently in males and females. Although the molecular basis of CI remains unknown, proteins with ankyrin (ANK) domains represent promising candidates since they might interact with a wide range of host proteins. Here we searched for sequence variability in the 58 ANK genes carried in the genomes of Wolbachia variants infecting Culex pipiens. Only five ANK genes were polymorphic in the genomes of incompatible Wolbachia variants, and none correlated with the CI pattern obtained with 15 mosquito strains (representing 14 Wolbachia variants). Further analysis of ANK gene expression evidenced host- and sex-dependent variations, which did not improve the correlation. Taken together, these data do not support the direct implication of ANK genes in CI determinism.  相似文献   
100.
Fluorescence labeling is the prevailing imaging technique in cell biology research. When they involve statistical investigations on a large number of cells, experimental studies require both low magnification to get a reliable statistical population and high contrast to achieve accurate diagnosis on the nature of the cells' perturbation. Because microscope objectives of low magnification generally yield low collection efficiency, such studies are limited by the fluorescence signal weakness. To overcome this technological bottleneck, we proposed a new method based on metal-coated substrates that enhance the fluorescence process and improve collection efficiency in epifluorescence observation and that can be directly used with a common microscope setup. We developed a model based on the dipole approximation with the aim of simulating the optical behavior of a fluorophore on such a substrate and revealing the different mechanisms responsible for fluorescence enhancement. The presence of a reflective surface modifies both excitation and emission processes and additionally reshapes fluorescence emission lobes. From both theoretical and experimental results, we found the fluorescence signal emitted by a molecular cyanine 3 dye layer to be amplified by a factor approximately 30 when fluorophores are separated by a proper distance from the substrate. We then adapted our model to the case of homogeneously stained micrometer-sized objects and demonstrated mean signal amplification by a factor approximately 4. Finally, we applied our method to fluorescence imaging of dog kidney cells and verified experimentally the simulated results.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号