首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   243篇
  免费   37篇
  2023年   1篇
  2022年   4篇
  2021年   6篇
  2019年   4篇
  2018年   4篇
  2017年   4篇
  2016年   11篇
  2015年   16篇
  2014年   13篇
  2013年   18篇
  2012年   20篇
  2011年   21篇
  2010年   11篇
  2009年   12篇
  2008年   6篇
  2007年   12篇
  2006年   9篇
  2005年   7篇
  2004年   9篇
  2003年   5篇
  2002年   11篇
  2001年   7篇
  2000年   15篇
  1999年   4篇
  1998年   4篇
  1997年   4篇
  1994年   1篇
  1993年   4篇
  1992年   4篇
  1990年   6篇
  1989年   3篇
  1988年   3篇
  1987年   1篇
  1986年   3篇
  1985年   4篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1979年   1篇
  1978年   1篇
  1974年   1篇
  1971年   2篇
  1969年   1篇
  1965年   1篇
  1936年   1篇
  1928年   1篇
排序方式: 共有280条查询结果,搜索用时 343 毫秒
121.
Trafficking of the proteins that form gap junctions (connexins) from the site of synthesis to the junctional domain appears to require cytoskeletal delivery mechanisms. Although many cell types exhibit specific delivery of connexins to polarized cell sites, such as connexin32 (Cx32) gap junctions specifically localized to basolateral membrane domains of hepatocytes, the precise roles of actin- and tubulin-based systems remain unclear. We have observed fluorescently tagged Cx32 trafficking linearly at speeds averaging 0.25 μm/s in a polarized hepatocyte cell line (WIF-B9), which is abolished by 50 μM of the microtubule-disrupting agent nocodazole. To explore the involvement of cytoskeletal components in the delivery of connexins, we have used a preparation of isolated Cx32-containing vesicles from rat hepatocytes and assayed their ATP-driven motility along stabilized rhodamine-labeled microtubules in vitro. These assays revealed the presence of Cx32 and kinesin motor proteins in the same vesicles. The addition of 50 μM ATP stimulated vesicle motility along linear microtubule tracks with velocities of 0.4-0.5 μm/s, which was inhibited with 1 mM of the kinesin inhibitor AMP-PNP (adenylyl-imidodiphosphate) and by anti-kinesin antibody but only minimally affected by 5 μM vanadate, a dynein inhibitor, or by anti-dynein antibody. These studies provide evidence that Cx32 can be transported intracellularly along microtubules and presumably to junctional domains in cells and highlight an important role of kinesin motor proteins in microtubule-dependent motility of Cx32.  相似文献   
122.
Wolbachia are maternally inherited endosymbionts that can invade arthropod populations through manipulation of their reproduction. In mosquitoes, Wolbachia induce embryonic death, known as cytoplasmic incompatibility (CI), whenever infected males mate with females either uninfected or infected with an incompatible strain. Although genetic determinants of CI are unknown, a functional model involving the so-called mod and resc factors has been proposed. Natural populations of Culex pipiens mosquito display a complex CI relationship pattern associated with the highest Wolbachia (wPip) genetic polymorphism reported so far. We show here that C. pipiens populations from La Réunion, a geographically isolated island in the southwest of the Indian Ocean, are infected with genetically closely related wPip strains. Crossing experiments reveal that these Wolbachia are all mutually compatible. However, crosses with genetically more distant wPip strains indicate that Wolbachia strains from La Réunion belong to at least five distinct incompatibility groups (or crossing types). These incompatibility properties which are strictly independent from the nuclear background, formally establish that in C. pipiens, CI is controlled by several Wolbachia mod/resc factors.  相似文献   
123.
The mechanisms that drive species coexistence and community dynamics have long puzzled ecologists. Here, we explain species coexistence, size structure and diversity patterns in a phytoplankton community using a combination of four fundamental factors: organism traits, size-based constraints, hydrology and species competition. Using a 'microscopic' Lotka-Volterra competition (MLVC) model (i.e. with explicit recipes to compute its parameters), we provide a mechanistic explanation of species coexistence along a niche axis (i.e. organismic volume). We based our model on empirically measured quantities, minimal ecological assumptions and stochastic processes. In nature, we found aggregated patterns of species biovolume (i.e. clumps) along the volume axis and a peak in species richness. Both patterns were reproduced by the MLVC model. Observed clumps corresponded to niche zones (volumes) where species fitness was highest, or where fitness was equal among competing species. The latter implies the action of equalizing processes, which would suggest emergent neutrality as a plausible mechanism to explain community patterns.  相似文献   
124.
Rho-GTPases control a wide range of physiological processes by regulating actin cytoskeleton dynamics. Numerous studies on neuronal cell lines have established that Rac, Cdc42, and RhoG activate neurite extension, while RhoA mediates neurite retraction. Guanine nucleotide exchange factors (GEFs) activate Rho-GTPases by accelerating GDP/GTP exchange. Trio displays two Rho-GEF domains, GEFD1, activating the Rac pathway via RhoG, and GEFD2, acting on RhoA, and contains numerous signaling motifs whose contribution to Trio function has not yet been investigated. Genetic analyses in Drosophila and in Caenorhabditis elegans indicate that Trio is involved in axon guidance and cell motility via a GEFD1-dependent process, suggesting that the activity of its Rho-GEFs is strictly regulated. Here, we show that human Trio induces neurite outgrowth in PC12 cells in a GEFD1-dependent manner. Interestingly, the spectrin repeats and the SH3-1 domain of Trio are essential for GEFD1-mediated neurite outgrowth, revealing an unexpected role for these motifs in Trio function. Moreover, we demonstrate that Trio-induced neurite outgrowth is mediated by the GEFD1-dependent activation of RhoG, previously shown to be part of the NGF (nerve growth factor) pathway. The expression of different Trio mutants interferes with NGF-induced neurite outgrowth, suggesting that Trio may be an upstream regulator of RhoG in this pathway. In addition, we show that Trio protein accumulates under NGF stimulation. Thus, Trio is the first identified Rho-GEF involved in the NGF-differentiation signaling.  相似文献   
125.
126.

Objective

Type 2 diabetes (T2DM) and obesity are associated with magnesium deficiency. We aimed to determine whether the presence of type 2 diabetes and the degree of metabolic control are related to low serum magnesium levels in obese individuals.

Methods

A) Case-control study: 200 obese subjects [50 with T2DM (cases) and 150 without diabetes (controls)] prospectively recruited. B) Interventional study: the effect of bariatric surgery on serum magnesium levels was examined in a subset of 120 obese subjects (40 with type 2 diabetes and 80 without diabetes).

Results

Type 2 diabetic patients showed lower serum magnesium levels [0.75±0.07 vs. 0.81±0.06 mmol/L; mean difference −0.06 (95% CI −0.09 to −0.04); p<0.001] than non-diabetic patients. Forty-eight percent of diabetic subjects, but only 15% of non-diabetic subjects showed a serum magnesium concentration lower than 0.75 mmol/L. Significant negative correlations between magnesium and fasting plasma glucose, HbA1c, HOMA-IR, and BMI were detected. Multiple linear regression analysis showed that fasting plasma glucose and HbA1c independently predicted serum magnesium. After bariatric surgery serum magnesium increased only in those patients in whom diabetes was resolved, but remain unchanged in those who not, without difference in loss weight between groups. Changes in serum magnesium negatively correlated with changes in fasting plasma glucose and HbA1c. Absolute changes in HbA1c independently predicted magnesium changes in the multiple linear regression analysis.

Conclusions

Our results provide evidence that the presence of diabetes and the degree of metabolic control are essential in accounting for the lower levels of magnesium that exist in obese subjects.  相似文献   
127.
Marine environments are greatly affected by climate change, and understanding how this perturbation affects marine vertebrates is a major issue. In this context, it is essential to identify the environmental drivers of animal distribution. Here, we focused on the little auk (Alle alle), one of the world's most numerous seabirds and a major component in Arctic food webs. Using a multidisciplinary approach, we show how little auks adopt specific migratory strategies and balance environmental constraints to optimize their energy budgets. Miniature electronic loggers indicate that after breeding, birds from East Greenland migrate >2000 km to overwinter in a restricted area off Newfoundland. Synoptic data available from the Continuous Plankton Recorder (CPR) indicate that this region harbours some of the highest densities of the copepod Calanus finmarchicus found in the North Atlantic during winter. Examination of large-scale climatic and oceanographic data suggests that little auks favour patches of high copepod abundance in areas where air temperature ranges from 0°C to 5°C. These results greatly advance our understanding of animal responses to extreme environmental constraints, and highlight that information on habitat preference is key to identifying critical areas for marine conservation.  相似文献   
128.
Space competition effects are well-known in many microbiological and ecological systems. Here we analyze such an effect in human populations. The Neolithic transition (change from foraging to farming) was mainly the outcome of a demographic process that spread gradually throughout Europe from the Near East. In Northern Europe, archaeological data show a slowdown on the Neolithic rate of spread that can be related to a high indigenous (Mesolithic) population density hindering the advance as a result of the space competition between the two populations. We measure this slowdown from a database of 902 Early Neolithic sites and develop a time-delayed reaction-diffusion model with space competition between Neolithic and Mesolithic populations, to predict the observed speeds. The comparison of the predicted speed with the observations and with a previous non-delayed model show that both effects, the time delay effect due to the generation lag and the space competition between populations, are crucial in order to understand the observations.  相似文献   
129.
The genetic diversity of Agave plants is threatened by clonal commercial reproduction and climatic change. Sexual reproduction is uncommon and research on seed germination is scarce. The present study evaluated the seed germination of Agave lechuguilla, Agave striata, Agave americana var. marginata, Agave asperrima, Agave cupreata, Agave duranguesis, Agave angustifolia ssp. tequilana and Agave salmiana at constant temperatures (10, 15, 20, 25, 30, 35 and 40°C). Initial imbibition (after the first 12 h) was significantly variable among species, positively correlated with seed weight (r = 0.6560, P < 0.001) and increased with temperature (from 35% at 10°C to 66% at 40°C). Temperature affected maximum imbibition (83–150%) for A. asperrima, A. lechuguilla, A. salmiana and A. striata; other species averaged 110%. Most germination kinetics best fitted a logistic model, whereas only a few treatments fit a Weibull model. The time to germination onset diminished (P < 0.05) from 125–173 h at 15°C to 68–84 h at 25°C, and then ascended to 84–196 h at 35°C. The mean germination rate and seed germination percentage after 312 h peaked at 25°C (0.50–0.95% seeds/h and 85–99%, respectively) and fell (P < 0.05) to near zero at 10 and 40°C. Temperatures of 10, 35 and 40°C were partially lethal to A. asperrima, A. duranguensis and A. salmiana seeds. The time to germination onset, seed germination percentage after 312 h and mean germination rate are best described by a Gaussian distribution, with its optimum at approximately 25°C. Thus, optimum temperatures are related to the ecological characteristics of each species area.  相似文献   
130.
This paper discusses the thermoresponsive nanoparticles obtained by self-assemblies of nonlinear oligosaccharide-based diblock copolymer systems. These diblock copolymers were synthesized by Cu(I)-catalyzed 1,3-dipolar azide/alkyne cycloaddition ("click" reaction) of propargyl-functionalized β-cyclodextrin (βCyD) and xyloglucooligosaccharide (XGO) with poly(N-isopropylacrylamide) (PNIPAM) having a terminal azido group prepared by atom transfer radical polymerization (ATRP). Elastic and quasi-elastic light scattering analysis of the dibock copolymers in H(2)O indicated that thermodynamic phase transitions of the PNIPAM blocks at their cloud points (T(cp)s ≈ 34 °C), around lower critical solution temperatures (LCSTs), triggered their self-assemblies into the nanoparticles. These nanoparticles had narrow size distributions and small interphases (i.e., sharp boundaries). The mean hydrodynamic radii (R(h)s) of the βCyD and XGO-based nanoparticles were determined to be around 150 and 250 nm upon slow heating (i.e., step-by-step heating), and 364 and 91.5 nm upon fast heating, respectively, depending on a predominance of the interchain association or the intrachain contraction. Transmission electron microscope (TEM) and field emission gun-scanning electron microscopy (FEG-SEM) images of the nanoparticles clearly showed compact spherical nanoparticles whose cores are mainly made with the PNIPAM blocks, whereas the rough shells consist in the oligosaccharidic blocks.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号