首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2662篇
  免费   264篇
  国内免费   3篇
  2929篇
  2023年   13篇
  2022年   19篇
  2021年   49篇
  2020年   15篇
  2019年   41篇
  2018年   39篇
  2017年   33篇
  2016年   72篇
  2015年   119篇
  2014年   140篇
  2013年   152篇
  2012年   205篇
  2011年   189篇
  2010年   128篇
  2009年   116篇
  2008年   147篇
  2007年   156篇
  2006年   150篇
  2005年   161篇
  2004年   146篇
  2003年   118篇
  2002年   119篇
  2001年   49篇
  2000年   41篇
  1999年   36篇
  1998年   32篇
  1997年   26篇
  1996年   25篇
  1995年   25篇
  1994年   22篇
  1993年   17篇
  1992年   24篇
  1991年   14篇
  1990年   21篇
  1989年   12篇
  1988年   18篇
  1987年   12篇
  1986年   14篇
  1985年   24篇
  1984年   12篇
  1983年   12篇
  1982年   12篇
  1981年   9篇
  1980年   12篇
  1979年   7篇
  1978年   12篇
  1977年   10篇
  1976年   10篇
  1975年   18篇
  1971年   8篇
排序方式: 共有2929条查询结果,搜索用时 10 毫秒
101.
A functional linkage of the structurally unrelated receptors HER2 and CXCR4 has been suggested for breast cancer but has not been evaluated for esophageal carcinoma. The inhibition of HER2 leads to a reduction of primary tumor growth and metastases in an orthotopic model of esophageal carcinoma. The chemokine receptor CXCR4 has been implicated in metastatic dissemination of various tumors and correlates with poor survival in esophageal carcinoma. The aim of this study was to investigate a correlation between the expression levels of HER2 and CXCR4 and to evaluate the involvemnent of CXCR4-expression in HER2-positive esophageal carcinoma. The effects of HER2-inhibition with trastuzumab and of CXCR4-inhibition with AMD3100 on primary tumor growth, metastatic homing, and receptor expression were evaluated in vitro and in an orthotopic model of metastatic esophageal carcinoma using MRI for imaging. The clinical relevance of HER2- and CXCR4-expression was examined in esophageal carcinoma patients. A significant correlation of HER2- and CXCR4-expression in primary tumor and metastases exists in the orthotopic model. Trastuzumab and AMD3100 treatment led to a significant reduction of primary tumor growth, metastases and micrometastases. HER2-expression was significantly elevated under AMD3100 treatment in the primary tumor and particularly in the metastases. The positive correlation between HER2- and CXCR4-expression was validated in esophageal cancer patients. The correlation of CXCR4- and HER2-expression and the elevation of HER2-expression and reduction of metastases through CXCR4-inhibition suggest a possible functional linkage and a role in tumor dissemination in HER2-positive esophageal carcinoma.  相似文献   
102.
Influenza A(H1N1)pdm09 viruses cause sporadically very severe disease including fatal clinical outcomes associated with pneumonia, viremia and myocarditis. A mutation characterized by the substitution of aspartic acid (wild-type) to glycine at position 222 within the haemagglutinin gene (HA-D222G) was recorded during the 2009 H1N1 pandemic in Germany and other countries with significant frequency in fatal and severe cases. Additionally, A(H1N1)pdm09 viruses exhibiting the polymorphism HA-222D/G/N were detected both in the respiratory tract and in blood. Specimens from mild, fatal and severe cases were collected to study the heterogeneity of HA-222 in A(H1N1)pdm09 viruses circulating in Germany between 2009 and 2011. In order to enable rapid and large scale analysis we designed a pyrosequencing (PSQ) assay. In 2009/2010, the 222D wild-type of A(H1N1)pdm09 viruses predominated in fatal and severe outcomes. Moreover, co-circulating virus mutants exhibiting a D222G or D222E substitution (8/6%) as well as HA-222 quasispecies were identified (10%). Both the 222D/G and the 222D/G/N/V/Y polymorphisms were confirmed by TA cloning. PSQ analyses of viruses associated with mild outcomes revealed mainly the wild-type 222D and no D222G change in both seasons. However, an increase of variants with 222D/G polymorphism (60%) was characteristic for A(H1N1)pdm09 viruses causing fatal and severe cases in the season 2010/2011. Pure 222G viruses were not observed. Our results support the hypothesis that the D222G change may result from adaptation of viral receptor specificity to the lower respiratory tract. This could explain why transmission of the 222G variant is less frequent among humans. Thus, amino acid changes at HA position 222 may be the result of viral intra-host evolution leading to the generation of variants with an altered viral tropism.  相似文献   
103.
Modern biology research requires simple techniques for efficient and restriction site-independent modification of genetic material. Classical cloning and mutagenesis strategies are limited by their dependency on restriction sites and the use of complementary primer pairs. Here, we describe the Single Oligonucleotide Mutagenesis and Cloning Approach (SOMA) that is independent of restriction sites and only requires a single mutagenic oligonucleotide to modify a plasmid. We demonstrate the broad application spectrum of SOMA with three examples. First, we present a novel plasmid that in a standardized and rapid fashion can be used as a template for SOMA to generate GFP-reporters. We successfully use such a reporter to assess the in vivo knock-down quality of morpholinos in Xenopus laevis embryos. In a second example, we show how to use a SOMA-based protocol for restriction-site independent cloning to generate chimeric proteins by domain swapping between the two human hRMD5a and hRMD5b isoforms. Last, we show that SOMA simplifies the generation of randomized single-site mutagenized gene libraries. As an example we random-mutagenize a single codon affecting the catalytic activity of the yeast Ssy5 endoprotease and identify a spectrum of tolerated and non-tolerated substitutions. Thus, SOMA represents a highly efficient alternative to classical cloning and mutagenesis strategies.  相似文献   
104.
Somatic mutations are an underappreciated source of genetic variation within multi-cellular organisms. The resulting genetic mosaicism should be particularly abundant in large clones of vegetatively propagating angiosperms. Little is known on the abundance and ecological correlates of genetic mosaicism in field populations, despite its potential evolutionary significance. Because sexual reproduction restores genetic homogeneity, we predicted that in facultatively clonally reproducing organisms, the prevalence of genetic mosaicism increases with increasing clonality. This was tested among 33 coastal locations colonized by the ecologically important marine angiosperm Zostera marina, ranging from Portugal to Finland. Genetic mosaics were detectable as complex microsatellite genotypes at two hypervariable loci that revealed additional mosaic alleles, suggesting the presence of one or more divergent cell lineages within the same ramet. The proportions of non-mosaic genotypes in a population sharply decreased below a clonal richness of 0.2. Accordingly, more genetic mosaics were found at the southern and northern limit of the distribution of Z. marina in Europe where sexual reproduction is rare or absent. The genetic mosaics observed at neutral microsatellite markers suggest the possibility of within-clone variation at selectively relevant loci and supports the notion that members of clones are seldom genetically identical.  相似文献   
105.
Accelerated gene evolution is a hallmark of pathogen adaptation and specialization following host-jumps. However, the molecular processes associated with adaptive evolution between host-specific lineages of a multihost plant pathogen remain poorly understood. In the blast fungus Magnaporthe oryzae (Syn. Pyricularia oryzae), host specialization on different grass hosts is generally associated with dynamic patterns of gain and loss of virulence effector genes that tend to define the distinct genetic lineages of this pathogen. Here, we unravelled the biochemical and structural basis of adaptive evolution of APikL2, an exceptionally conserved paralog of the well-studied rice-lineage specific effector AVR-Pik. Whereas AVR-Pik and other members of the six-gene AVR-Pik family show specific patterns of presence/absence polymorphisms between grass-specific lineages of M. oryzae, APikL2 stands out by being ubiquitously present in all blast fungus lineages from 13 different host species. Using biochemical, biophysical and structural biology methods, we show that a single aspartate to asparagine polymorphism expands the binding spectrum of APikL2 to host proteins of the heavy-metal associated (HMA) domain family. This mutation maps to one of the APikL2-HMA binding interfaces and contributes to an altered hydrogen-bonding network. By combining phylogenetic ancestral reconstruction with an analysis of the structural consequences of allelic diversification, we revealed a common mechanism of effector specialization in the AVR-Pik/APikL2 family that involves two major HMA-binding interfaces. Together, our findings provide a detailed molecular evolution and structural biology framework for diversification and adaptation of a fungal pathogen effector family following host-jumps.  相似文献   
106.
The nucleotide sequence data reported in this paper have been submitted to the GenBank nucleotide sequence database and have been assigned the accession numbers L11045 (human LMP7) and L11145 (mouse Lmp-7).  相似文献   
107.
The nervous system coordinates many aspects of body function such as learning, memory, behaviour and locomotion. Therefore, it must develop and maintain an intricate network of differentiated neuronal cells, which communicate efficiently with each other and with non‐neuronal target cells. Unlike most somatic cells, differentiated neurons are post‐mitotic and characterized by a highly polarized morphology that determines the flow of information. Among other post‐translational modifications, the ubiquitination of specific protein substrates was recently shown to have a crucial role in the regulation of neuronal development and differentiation. Here, we review recent findings that illustrate the mechanisms that mediate the temporal and spatial control of neuronal protein turnover by the ubiquitin–proteasome system (UPS), which is crucial for the development and function of the nervous system.  相似文献   
108.
Stocking can be an effective management and conservation tool, but it also carries the danger of eroding natural population structure, introducing non-native strains and reducing genetic diversity. Sea trout, the anadromous form of the brown trout (Salmo trutta), is a highly targeted species that is often managed by stocking. Here, we assess the present-day population genetic structure of sea trout in a backdrop of 125 years of stocking in Northern Germany. The study area is characterized by short distances between the Baltic and North Sea river watersheds, historic use of fish from both watersheds for stocking, and the creation of a potential migration corridor between the Baltic and North Sea with the opening of the Kiel Canal 120 years ago. A survey of 24 river systems with 180 SNPs indicates that moderate but highly significant population genetic structure has persisted both within and between the Baltic and North Sea. This genetic structure is characterized by (i) heterogeneous patterns of admixture between the Baltic and North Sea that do not correlate with distance from the Kiel Canal and are therefore likely due to historic stocking practises, (ii) genetic isolation by distance in the Baltic Sea at a spatial scale of <?200 km that is consistent with the homing behaviour of sea trout, and (iii) at least one genetically distinct Baltic Sea river system. In light of these results, we recommend keeping fish of North Sea and Baltic Sea origin separate for stocking, and restricting Baltic Sea translocations to neighbouring river systems.  相似文献   
109.
Usage of the enhanced green fluorescent protein (eGFP) in living mammalian cells is limited to aerobic conditions due to requirement of oxygen during chromophore formation. Since many diseases or disease models are associated with acute or chronic hypoxia, eGFP-labeling of structures of interest in experimental studies might be unreliable leading to biased results. Thus, a chromophore yielding a stable fluorescence under hypoxic conditions is desirable. The fluorescence of flavin mononucleotide (FMN)-based fluorescent proteins (FbFPs) does not require molecular oxygen. Recently, the advantages of FbFPs for several bacterial strains and yeasts were described, specifically, their usage as a real time fluorescence marker in bacterial expression studies and their ability of chromophore formation under anaerobic conditions. Our objective was to verify if FbFPs also function in mammalian cells in order to potentially broaden the repertoire of chromophores with ones that can reliably be used in mammalian studies under hypoxic conditions. In the present study, we demonstrate for the first time, that FbFPs can be expressed in different mammalian cells, among them murine neural stem cells during proliferative and differentiated stages. Fluorescence intensities were comparable to eGFP. In contrast to eGFP, the FbFP fluorescence did not decrease when cells were exposed to defined hypoxic conditions neither in proliferating nor in differentiated cells. Thus, FbFPs can be regarded as an alternative to eGFP in studies that target cellular structures which are exposed to hypoxic conditions.  相似文献   
110.
The guts of soil-feeding macroinvertebrates contain a complex microbial community that is involved in the transformation of ingested soil organic matter. In a companion paper (T. Lemke, U. Stingl, M. Egert, M. W. Friedrich, and A. Brune, Appl. Environ. Microbiol. 69:6650-6658, 2003), we show that the gut of our model organism, the humivorous larva of the cetoniid beetle Pachnoda ephippiata, is characterized by strong midgut alkalinity, high concentrations of microbial fermentation products, and the presence of a diverse, yet unstudied microbial community. Here, we report on the community structure of bacteria and archaea in the midgut, hindgut, and food soil of P. ephippiata larvae, determined with cultivation-independent techniques. Clone libraries and terminal restriction fragment length polymorphism analysis of 16S rRNA genes revealed that the intestines of P. ephippiata larvae contain a complex gut microbiota that differs markedly between midgut and hindgut and that is clearly distinct from the microbiota in the food soil. The bacterial community is dominated by phylogenetic groups with a fermentative metabolism (Lactobacillales, Clostridiales, Bacillales, and Cytophaga-Flavobacterium-Bacteroides [CFB] phylum), which is corroborated by high lactate and acetate concentrations in the midgut and hindgut and by the large numbers of lactogenic and acetogenic bacteria in both gut compartments reported in the companion paper. Based on 16S rRNA gene frequencies, Actinobacteria dominate the alkaline midgut, while the hindgut is dominated by members of the CFB phylum. The archaeal community, however, is less diverse. 16S rRNA genes affiliated with mesophilic Crenarchaeota, probably stemming from the ingested soil, were most frequent in the midgut, whereas Methanobacteriaceae-related 16S rRNA genes were most frequent in the hindgut. These findings agree with the reported restriction of methanogenesis to the hindgut of Pachnoda larvae.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号