首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   898篇
  免费   98篇
  2018年   8篇
  2017年   9篇
  2016年   15篇
  2015年   26篇
  2014年   31篇
  2013年   35篇
  2012年   41篇
  2011年   33篇
  2010年   21篇
  2009年   23篇
  2008年   30篇
  2007年   38篇
  2006年   35篇
  2005年   33篇
  2004年   38篇
  2003年   20篇
  2002年   34篇
  2001年   32篇
  2000年   32篇
  1999年   24篇
  1998年   19篇
  1997年   22篇
  1996年   15篇
  1995年   16篇
  1994年   19篇
  1993年   10篇
  1992年   22篇
  1991年   14篇
  1990年   21篇
  1989年   13篇
  1988年   17篇
  1987年   12篇
  1986年   15篇
  1985年   23篇
  1984年   12篇
  1983年   12篇
  1982年   12篇
  1981年   10篇
  1980年   11篇
  1978年   10篇
  1977年   12篇
  1976年   10篇
  1975年   19篇
  1972年   5篇
  1971年   8篇
  1969年   4篇
  1967年   4篇
  1964年   5篇
  1962年   5篇
  1957年   5篇
排序方式: 共有996条查询结果,搜索用时 15 毫秒
91.
A recently developed computerized method for estimation of myocardial perfusion, based on the analysis of the time-density curves, is demonstrated to assess myocardial blush over a selected myocardial region of interest in a patient with obstructive hypertrophic cardiomyopathy before and after alcohol septal ablation.  相似文献   
92.
Phosphate plays essential biological roles and its plasma level in humans requires tight control to avoid bone loss (insufficiency) or vascular calcification (excess). Intestinal absorption and renal reabsorption of phosphate are mediated by members of the SLC34 family of sodium-coupled transporters (NaPi-IIa,b,c) whose membrane expression is regulated by various hormones, circulating proteins, and phosphate itself. Consequently, NaPi-II proteins are also potentially important pharmaceutical targets for controlling phosphate levels. Their crucial role in Pi homeostasis is underscored by pathologies resulting from naturally occurring SLC34 mutations and SLC34 knockout animals. SLC34 isoforms have been extensively studied with respect to transport mechanism and structure-function relationships; however, the three-dimensional structure is unknown. All SLC34 transporters share a duplicated motif comprising a glutamine followed by a stretch of threonine or serine residues, suggesting the presence of structural repeats as found in other transporter families. Nevertheless, standard bioinformatic approaches fail to clearly identify a suitable template for molecular modeling. Here, we used hydrophobicity profiles and hidden Markov models to define a structural repeat common to all SLC34 isoforms. Similar approaches identify a relationship with the core regions in a crystal structure of Vibrio cholerae Na+-dicarboxylate transporter VcINDY, from which we generated a homology model of human NaPi-IIa. The aforementioned SLC34 motifs in each repeat localize to the center of the model, and were predicted to form Na+ and Pi coordination sites. Functional relevance of key amino acids was confirmed by biochemical and electrophysiological analysis of expressed, mutated transporters. Moreover, the validity of the predicted architecture is corroborated by extensive published structure-function studies. The model provides key information for elucidating the transport mechanism and predicts candidate substrate binding sites.  相似文献   
93.
The species composition, distribution, and biodiversity of the bacterial communities in the rumen of cows fed alfalfa or triticale were investigated using 16S rRNA gene clone library analyses. The rumen bacterial community was fractionated and analyzed as three separate fractions: populations in the planktonic, loosely attached to rumen digesta particles, and tightly attached to rumen digesta particles. Six hundred and thirteen operational taxonomic units (OTUs) belonging to 32 genera, 19 families, and nine phyla of the domain Bacteria were identified from 1014 sequenced clones. Four hundred and fifty one of the 613 OTUs were identified as new species. These bacterial sequences were distributed differently among the three fractions in the rumen digesta of cows fed alfalfa or triticale. Chao 1 estimation revealed that, in both communities, the populations tightly attached to particulates were more diverse than the planktonic and those loosely attached to particulates. S-Libshuff detected significant differences in the composition between any two fractions in the rumen of cows with the same diet and between the communities fed alfalfa and triticale diets. The species richness estimated for the communities fed alfalfa and triticale is 1027 and 662, respectively. The diversity of the rumen bacterial community examined in this study is greater than previous studies have demonstrated and the differences in the community composition between two high-fiber diets have implications for sample selection for downstream metagenomics applications.  相似文献   
94.

Background

Studies on host-pathogen interactions in a range of pathosystems have revealed an array of mechanisms by which plants reduce the efficiency of pathogenesis. While R-gene mediated resistance confers highly effective defense responses against pathogen invasion, quantitative resistance is associated with intermediate levels of resistance that reduces disease progress. To test the hypothesis that specific loci affect distinct stages of fungal pathogenesis, a set of maize introgression lines was used for mapping and characterization of quantitative trait loci (QTL) conditioning resistance to Setosphaeria turcica, the causal agent of northern leaf blight (NLB). To better understand the nature of quantitative resistance, the identified QTL were further tested for three secondary hypotheses: (1) that disease QTL differ by host developmental stage; (2) that their performance changes across environments; and (3) that they condition broad-spectrum resistance.

Results

Among a set of 82 introgression lines, seven lines were confirmed as more resistant or susceptible than B73. Two NLB QTL were validated in BC4F2 segregating populations and advanced introgression lines. These loci, designated qNLB1.02 and qNLB1.06, were investigated in detail by comparing the introgression lines with B73 for a series of macroscopic and microscopic disease components targeting different stages of NLB development. Repeated greenhouse and field trials revealed that qNLB1.06 Tx303 (the Tx303 allele at bin 1.06) reduces the efficiency of fungal penetration, while qNLB1.02 B73 (the B73 allele at bin 1.02) enhances the accumulation of callose and phenolics surrounding infection sites, reduces hyphal growth into the vascular bundle and impairs the subsequent necrotrophic colonization in the leaves. The QTL were equally effective in both juvenile and adult plants; qNLB1.06 Tx303 showed greater effectiveness in the field than in the greenhouse. In addition to NLB resistance, qNLB1.02 B73 was associated with resistance to Stewart's wilt and common rust, while qNLB1.06 Tx303 conferred resistance to Stewart's wilt. The non-specific resistance may be attributed to pleiotropy or linkage.

Conclusions

Our research has led to successful identification of two reliably-expressed QTL that can potentially be utilized to protect maize from S. turcica in different environments. This approach to identifying and dissecting quantitative resistance in plants will facilitate the application of quantitative resistance in crop protection.  相似文献   
95.
Senescence-accelerated mice (SAM) strains are useful models to understand the mechanisms of age-dependent degeneration. In this study, measurements of the mitochondrial membrane potential (Δψm) of platelets and the Adenosine 5-triphosphate (ATP) content of hippocampi and platelets were made, and platelet mitochondria were observed in SAMP8 (faster aging mice) and SAMR1 (aging resistant control mice) at 2, 6 and 9 months of age. In addition, an Aβ-induced (Amyloid beta-protein) damage model of platelets was established. After the addition of Aβ, the Δψm of platelets of SAMP8 at 1and 6 months of age were measured. We found that platelet Δψm, and hippocampal and platelet ATP content of SAMP8 mice decreased at a relatively early age compared with SAMR1. The platelets of 6 month-old SAMP8 showed a tolerance to Aβ-induced damages. These results suggest that mitochondrial dysfunction might be one of the mechanisms leading to age-associated degeneration in SAMP mice at an early age and the platelets could serve as a biomarker for detection of mitochondrial function and age related disease.  相似文献   
96.
Plasma catecholamines were measured following surgery under anaesthesia and after exposing hagfish to 90 and 110% sea water (SW). Plasma noradrenaline (NA) concentration increased from a resting value of 7 to 818 nM l−1 on anaesthesia. Plasma adrenaline (AD) did not change. NA concentrations also increased during volume depletion (110% SW), but to much lower values (26 nM l−1 at 100 min). AD concentrations were increased at 20 min, then fell. During volume loading (90% SW) NA fell, and AD increased to a maximum concentration of 511 nM l−1 at 40 min (resting concentration 24 nM l−1). The data are consistent with a vasoconstrictory role for NA on central veins when venous pressures fall and a vasodilatory role for AD on volume expansion.  相似文献   
97.
The temperature dependence of the transport kinetics of flounder Na(+)-coupled inorganic phosphate (P(i)) cotransporters (NaPi-IIb) expressed in Xenopus oocytes was investigated using radiotracer and electrophysiological assays. (32)P(i) uptake was strongly temperature-dependent and decreased by approximately 80% at a temperature change from 25 degrees C to 5 degrees C. The corresponding activation energy (E (a)) was approximately 14 kcal mol(-1) for the cotransport mode. The temperature dependence of the cotransport and leak modes was determined from electrogenic responses to 1 mM P(i) and phosphonoformic acid (PFA), respectively, under voltage clamp. The magnitude of the P(i)- and PFA-induced changes in holding current decreased with temperature. E (a) at -100 mV for the cotransport and leak modes was approximately 16 kcal mol(-1) and approximately 11 kcal mol(-1), respectively, which suggested that the leak is mediated by a carrier, rather than a channel, mechanism. Moreover, E (a) for cotransport was voltage-independent, suggesting that a major conformational change in the transport cycle is electroneutral. To identify partial reactions that confer temperature dependence, we acquired presteady-state currents at different temperatures with 0 mM P(i) over a range of external Na(+). The relaxation time constants increased, and the peak time constant shifted toward more positive potentials with decreasing temperature. Likewise, there was a depolarizing shift of the charge distribution, whereas the total available charge and apparent valency predicted from single Boltzmann fits were temperature-independent. These effects were explained by an increased temperature sensitivity of the Na(+)-debinding rate compared with the other voltage-dependent rate constants.  相似文献   
98.
Island Southeast Asia (ISEA) was first colonized by modern humans at least 45,000 years ago, but the extent to which the modern inhabitants trace their ancestry to the first settlers is a matter of debate. It is widely held, in both archaeology and linguistics, that they are largely descended from a second wave of dispersal, proto-Austronesian-speaking agriculturalists who originated in China and spread to Taiwan approximately 5,500 years ago. From there, they are thought to have dispersed into ISEA approximately 4,000 years ago, assimilating the indigenous populations. Here, we demonstrate that mitochondrial DNA diversity in the region is extremely high and includes a large number of indigenous clades. Only a fraction of these date back to the time of first settlement, and the majority appear to mark dispersals in the late-Pleistocene or early-Holocene epoch most likely triggered by postglacial flooding. There are much closer genetic links to Taiwan than to the mainland, but most of these probably predated the mid-Holocene "Out of Taiwan" event as traditionally envisioned. Only approximately 20% at most of modern mitochondrial DNAs in ISEA could be linked to such an event, suggesting that, if an agriculturalist migration did take place, it was demographically minor, at least with regard to the involvement of women.  相似文献   
99.
Potential humoral factors controlling an intestinal brake mechanism in Chinook salmon were characterised in terms of their effect on frequency and amplitude of spontaneous contractions in gastrointestinal (GI) rings. Concentration-response curves of gut contractility were produced for cholecystokinin-8 (CCK-8), gastrin-1, glucagon-like peptide-1 (GLP-1) and 5-hydroxytryptamine (5-HT) using gut rings from cardiac stomach (CS), pyloric stomach (PY), pyloric sphincter (Psp) and intestine (Int). Calculated log10 molar (M) EC50 values for CCK-8 (n=7) were: CS -8.15+/-0.90, PY -7.88+/-0.48, Psp -8.98+/-0.68, Int -8.93+/-0.64. Log10 M EC50 values calculated for gastrin 1 (n=7) were: CS -12.45+/-0.66, PY -12.55+/-0.63, Psp -9.35+/-0.78, Int -12.69+/-1.12. Log10 M EC50 values calculated for 5-HT (n=6) were: CS -4.78+/-1.05 and Psp -6.18+/-1.14. GLP -1 (n=4) produced no response in any of the tissues examined. Spontaneous contractions, measured as spikes per minute and the peak force generated were also measured for each hormone-tissue combination. The Psp generated the greatest mass-specific force, with stomach rings generating the least force. Dilutions of serum from fish diagnosed with gastric dilation air sacculitis (GDAS +ve) increased gut contractility compared to controls (GDAS -ve).  相似文献   
100.
As uncontrolled cell proliferation requires nucleotide biosynthesis, inhibiting enzymes that mediate nucleotide biosynthesis constitutes a rational approach to the management of oncological diseases. In practice, however, results of this strategy are mixed and thus elucidation of the mechanisms by which cancer cells evade the effect of nucleotide biosynthesis restriction is urgently needed. Here we explored the notion that intrinsic differences in cancer cell cycle velocity are important in the resistance toward inhibition of inosine monophosphate dehydrogenase (IMPDH) by mycophenolic acid (MPA). In short-term experiments, MPA treatment of fast-growing cancer cells effectively elicited G0/G1 arrest and provoked apoptosis, thus inhibiting cell proliferation and colony formation. Forced expression of a mutated IMPDH2, lacking a binding site for MPA but retaining enzymatic activity, resulted in complete resistance of cancer cells to MPA. In nude mice subcutaneously engrafted with HeLa cells, MPA moderately delayed tumor formation by inhibiting cell proliferation and inducing apoptosis. Importantly, we developed a lentiviral vector–based Tet-on label-retaining system that enables to identify, isolate and functionally characterize slow-cycling or so-called label-retaining cells (LRCs) in vitro and in vivo. We surprisingly found the presence of LRCs in fast-growing tumors. LRCs were superior in colony formation, tumor initiation and resistance to MPA as compared with fast-cycling cells. Thus, the slow-cycling compartment of cancer seems predominantly responsible for resistance to MPA.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号