首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   914篇
  免费   109篇
  国内免费   1篇
  2021年   15篇
  2019年   7篇
  2018年   9篇
  2017年   14篇
  2016年   24篇
  2015年   41篇
  2014年   34篇
  2013年   51篇
  2012年   47篇
  2011年   46篇
  2010年   40篇
  2009年   29篇
  2008年   41篇
  2007年   29篇
  2006年   41篇
  2005年   32篇
  2004年   38篇
  2003年   33篇
  2002年   27篇
  2001年   19篇
  2000年   29篇
  1999年   15篇
  1998年   17篇
  1997年   14篇
  1996年   11篇
  1994年   10篇
  1993年   11篇
  1992年   16篇
  1991年   15篇
  1990年   11篇
  1989年   12篇
  1988年   6篇
  1987年   15篇
  1986年   7篇
  1985年   14篇
  1984年   11篇
  1983年   9篇
  1982年   10篇
  1981年   11篇
  1980年   13篇
  1979年   12篇
  1978年   12篇
  1975年   9篇
  1974年   7篇
  1973年   9篇
  1972年   6篇
  1971年   7篇
  1970年   12篇
  1969年   7篇
  1967年   6篇
排序方式: 共有1024条查询结果,搜索用时 15 毫秒
71.
The light-driven photocycle of rhodopsin begins the photoreceptor cascade that underlies visual response. In a sequence of events, the retinal covalently attached to the rhodopsin protein undergoes a conformational change that communicates local changes to a global conformational change throughout the whole protein. In turn, the large-scale protein change then activates G-proteins and signal amplification throughout the cell. The nature of this change, involving a coupling between a local process and larger changes throughout the protein, may be important for many membrane proteins. In addition, functional work has shown that this coupling occurs with different efficiency in different lipid settings. To begin to understand the nature of the efficiency of this coupling in different lipid settings, we present a molecular dynamics study of rhodopsin in an explicit dioleoyl-phosphatidylcholine bilayer. Our system was simulated for 40 ns and provides insights into the very early events of the visual cascade, before the full transition and activation have occurred. In particular, we see an event near 10 ns that begins with a change in hydrogen bonding near the retinal and that leads through a series of coupled changes to a shift in helical tilt. This type of event, though rare on the molecular dynamics time-scale, could be an important clue to the types of coupling that occur between local and large-scale conformational change in many membrane proteins.  相似文献   
72.
Reovirus receptors and pathogenesis   总被引:1,自引:0,他引:1       下载免费PDF全文
  相似文献   
73.
Modulation of neurotransmitter-gated membrane ion channels by protein kinase C (PKC) has been the subject of a number of studies. However, less is known about PKC modulation of the serotonin type 3 (5-HT3) receptor, a ligand-gated membrane ion channel that can mediate fast synaptic transmission in the central and peripheral nervous system. Here, we show that PKC potentiated 5-HT3 receptor-mediated current in Xenopus oocytes expressing 5-HT3A receptors and mouse N1E-115 neuroblastoma cells. In addition, using a specific antibody directed to the extracellular N-terminal domain of the 5-HT3A receptor, treatment with the PKC activator, 4 beta-phorbol 12-myristate 13-acetate (PMA), significantly increased surface immunofluorescence. PKC also increased the amount of 5-HT3A receptor protein in the cell membrane without affecting the amount receptor protein in the total cell extract. The magnitude of PMA potentiation of 5-HT3A receptor-mediated responses is correlated with the magnitude of PMA enhancement of the receptor abundance in the cell surface membrane. PMA potentiation is unlikely to occur via direct phosphorylation of the 5-HT3A receptor protein since the potentiation was not affected by point mutation of each of the putative sites for PKC phosphorylation. However, preapplication of phalloidin, which stabilizes the actin polymerization, significantly inhibited PMA potentiation of 5-HT-activated responses in both N1E-115 cells and oocytes expressing 5-HT3A receptors. On the other hand, latrunculin-A, which destabilizes actin cytoskeleton, enhanced the PMA potentiation of 5-HT3A receptors. The observations suggest that PKC can modulate 5-HT3A receptor function and trafficking through an F-actin-dependent mechanism.  相似文献   
74.
Junction adhesion molecule is a receptor for reovirus   总被引:32,自引:0,他引:32  
Virus attachment to cells plays an essential role in viral tropism and disease. Reovirus serotypes 1 and 3 differ in the capacity to target distinct cell types in the murine nervous system and in the efficiency to induce apoptosis. The binding of viral attachment protein sigma1 to unidentified receptors controls these phenotypes. We used expression cloning to identify junction adhesion molecule (JAM), an integral tight junction protein, as a reovirus receptor. JAM binds directly to sigma1 and permits reovirus infection of nonpermissive cells. Ligation of JAM is required for reovirus-induced activation of NF-kappaB and apoptosis. Thus, reovirus interaction with cell-surface receptors is a critical determinant of both cell-type specific tropism and virus-induced intracellular signaling events that culminate in cell death.  相似文献   
75.
76.
77.
Ethanol can potentiate serotonin type 3 (5-HT(3)) receptor-mediated responses in various neurons and in cells expressing 5-HT(3A) receptors. However, the molecular basis for alcohol modulation of 5-HT(3) receptor function has not been determined. Here we report that point mutations of the arginine at amino acid 222 in the N-terminal domain of the 5-HT(3A) receptor can alter the EC(50) value of the 5-HT concentration-response curve. Some point mutations at amino acid 222 resulted in spontaneous opening of the 5-HT(3A) receptor channel and an inward current activated by ethanol in the absence of agonist. Among these mutant receptors, the amplitude of the current activated by ethanol in the absence of agonist was correlated with the amplitude of the current resulting from spontaneous channel openings, suggesting that the sensitivity of the receptor to ethanol in the absence of agonist is, at least in part, dependent on the preexisting conformational equilibrium of the receptor protein. On the other hand, point mutations that conferred greater sensitivity to ethanol potentiation of agonist-activated responses were less sensitive or insensitive to ethanol in the absence of agonist. For these receptors, the magnitude of the potentiation of agonist-activated responses by ethanol was inversely correlated with the EC(50) values of the 5-HT concentration-response curves, suggesting that these mutations may modulate ethanol sensitivity of the receptor by altering the EC(50) value of the receptor. Thus, distinct molecular processes may determine the sensitivity of 5-HT(3A) receptors to ethanol in the absence and presence of agonist.  相似文献   
78.
Ke Q  Yang Y  Ratner M  Zeind J  Jiang C  Forrest JN  Xiao YF 《Life sciences》2002,70(21):2547-2566
The effects of acute and subchronic exposure to mercury on the Cl- current (ICl) were investigated in cultured shark rectal gland (SRG) cells. The effects of intracellular accumulation of mercury on cytochrome P450 (P450) were also assessed. Bath perfusion of a cocktail solution containing forskolin, 1-isobutyl-3-methylxanthine, and 8-bromoadenosine monophosphate enhanced ICl. Addition of 10 microM HgCl2 significantly inhibited the cAMP-activated ICl (p < 0.05, n = 11). Intracellular dialysis with ATP gamma S did not prevent the inhibitory effect of mercury on ICl. In contrast, incubation of SRG cells with 10 microM HgCl2 for 48 hrs markedly increased ICl (p < 0.01, n = 12). Dephosphorylation of the channel by intracellular dialysis with phosphatase I and II abolished the mercury-incubated increase in ICl. The P450-mediated metabolite of arachidonic acid, 11,12-epoxyeicosatrienoic acid (11,12-EET), significantly increased ICl. However, application of 11,12-dihydroxyeicosatrienoic acid (11,12-DHT) did not alter ICl. Mercury incubation for 48 hrs did not alter the protein expression of Cl- channels, but caused an induction of CYP1A1 in cultured SRG cells. In addition, co-incubation of SRG cells with mercury and the P450 inhibitor clotrimazole prevented the mercury-incubated increase in ICl. Our results demonstrate that acute and subchronic application of mercury has opposing effects on ICl in cultured SRG cells. The acute effect of mercury on ICl may result from mercury blockade of Cl- channels. The subchronic effect of mercury on ICl may be due to an induction of P450 CYP1A1 and its mediated metabolites, but not due to an over-expression of Cl- channels.  相似文献   
79.
Intracellular aggregation of misfolded proteins is observed in a number of human diseases, in particular, neurologic disorders in which expanded tracts of polyglutamine residues play a central role. A variety of other proteins are prone to aggregation when mutated, indicating that this process is a common pathologic mechanism for inherited disorders. However, little is known about the relationship between the sequence of aggregating peptides and the specificity of intracellular accumulation. Here we demonstrate that substitution of two residues eliminates aggregation of a 111-amino acid peptide derived from the C-terminal portion of the cystic fibrosis transmembrane conductance regulator (CFTR). We also show that fusion to a reporter protein considerably alters the subcellular distribution of aggregating peptide. When fused to green fluorescent protein, the peptide containing amino acids 1370-1480 of CFTR accumulates in large perinuclear or nuclear aggregates. The same CFTR fragment devoid of green fluorescent protein localizes predominantly to discrete accumulations associated with mitochondria. Importantly, both types of accumulation are dependent on the presence of the same two amino acids within the CFTR sequence. Co-expression studies show that both CFTR-derived proteins can co-localize in large cytoplasmic/nuclear aggregates. However, neither CFTR construct accumulates in intracellular inclusions formed by N-terminal fragment of huntingtin. In addition to unique accumulation patterns, each aggregating peptide shows differences in association with chaperone proteins. Thus, our results indicate that the process of intracellular aggregation can be a selective process determined by the composition of the aggregating peptides.  相似文献   
80.
The aim of this study was to investigate if a low concentration of endothelin-1 (ET-1; 8 x 10(-10) M) may amplify the skin vasoconstrictor effect of other vasoactive substances in the pathogenesis of skin vasospasm. Pig skin flaps (6 x 16 cm) were perfused with Krebs buffer equilibrated with 95% O(2) and 5% CO(2) at 37 degrees C and pH 7.4. Skin perfusion pressure measured by a pressure transducer and skin perfusion assessed by the dermofluorometry technique were used for assessment of skin vasoconstriction. We observed that ET-1 (8 x 10(-10) M) significantly amplified the concentration-dependent (10(-7)-10(-5) M) skin vasoconstrictor effect of norepinephrine. More importantly, we observed for the first time that this low concentration of ET-1 also amplified the concentration-dependent (10(-8)-10(-6) M) skin vasoconstrictor effect of the thromboxane A(2) mimetic U-46619, and this amplification effect of ET-1 was completely blocked by the protein kinase C (PKC) inhibitor chelerythrine (5 x 10(-6) M). Conversely, the PKC activator phorbol 12,13-dibutyrate (10(-7) M) amplified the vasoconstrictor effect of U-46619. Furthermore, the sensitivity of the skin vasculature to the vasoconstrictor effect of extracellular Ca(2+) in U-46619-induced skin vasoconstriction was significantly enhanced in the presence of 8 x 10(-10) M ET-1. Finally, the cyclooxygenase inhibitor indomethacin (5 x 10(-6) M) did not affect the amplification effect of ET-1 on U-46619-induced skin vasoconstriction. We conclude that a low concentration of ET-1 can amplify the skin vasoconstrictor effect of U-46619 independent of endogenous cyclooxygenase products, and the mechanism may involve activation of PKC and increase in sensitivity of the contractile apparatus to Ca(2+) in smooth muscle cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号