首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   53篇
  免费   4篇
  2023年   1篇
  2022年   4篇
  2021年   4篇
  2020年   1篇
  2019年   3篇
  2018年   2篇
  2017年   1篇
  2016年   6篇
  2014年   4篇
  2013年   2篇
  2012年   5篇
  2011年   4篇
  2007年   3篇
  2006年   1篇
  2005年   1篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1991年   2篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1987年   3篇
排序方式: 共有57条查询结果,搜索用时 109 毫秒
11.
12.
Several pathways involved in regulation of intracellular protein integrity are known as the protein quality control (PQC) system. Molecular chaperones as the main players are engaged in various aspects of PQC system. According to the importance of these proteins in cell survival, in the present study, we traced endoplasmic reticulum-specific markers and chaperone-mediated autophagy (CMA)-associated factors as two main arms of PQC system in intra-hippocampal amyloid beta (Aβ)-injected rats during 10 days running. Data analysis from Western blot indicated that exposure to Aβ activates immunoglobulin heavy-chain-binding protein (Bip) which is the upstream regulator of unfolded protein responses (UPR). Activation of UPR system eventually led to induction of pro-apoptotic factors like CHOP, calpain, and caspase-12. Moreover, our data revealed that protein disulfide isomerase activity dramatically decreased after Aβ injection, which could be attributed to the increased levels of nitric oxide. Besides, Aβ injection induced levels of 2 members of heat shock proteins (Hsp) 70 and 90. Elevated levels of Hsps family members are accompanied by increased levels of lysosome-associated membrane protein type-2A (Lamp-2A) that are involved in CMA. Despite the reduction in CHOP, calpain, caspase-12, and Lamp-2A protein levels, the levels of molecular chaperones Bip, Hsps70, and 90 increased 10 days after Aβ injection in comparison to the control group. Based on our results, 10 days after Aβ injection, despite the activation of protective chaperones, markers associated with neurotoxicity were still elevated.  相似文献   
13.
Nepeta pogonosperma is an important medicinal plant with anti-inflammatory effects. An efficient and reliable transformation system for this plant was developed through optimization of several factors which affected the rate of Agrobacterium rhizogenes mediated transformation. Five bacterial strains, A4, ATCC15834, LBA9402, MSU440 and A13, two explant types, leaves and stems, and several co-cultivation media were examined. The maximum rate of hairy root induction was obtained from stem explants using MSU440 and ATCC15834 bacterial strains. A drastic increase in the frequency of transformation (91 %) was observed when MS medium lacking NH4NO3, KH2PO4, KNO3 and CaCl2. Hairy root lines were confirmed by polymerase chain reaction (PCR) using primers of the rolB gene. According to Southern blot analysis, one T-DNA copy was inserted into each of the hairy root lines. In the present study, transgenic hairy roots have been obtained trough genetic transformation by A. rhizogenes harbouring two plasmids, the Ri plasmid and pBI121 binary vector harbouring gus reporter gene. Expression of the gus gene in transgenic hairy root was confirmed by histochemical GUS assay.  相似文献   
14.
Lipid recovery and purification from microalgal cells continues to be a significant bottleneck in biodiesel production due to high costs involved and a high energy demand. Therefore, there is a considerable necessity to develop an extraction method which meets the essential requirements of being safe, cost‐effective, robust, efficient, selective, environmentally friendly, feasible for large‐scale production and free of product contamination. The use of wet concentrated algal biomass as a feedstock for oil extraction is especially desirable as it would avoid the requirement for further concentration and/or drying. This would save considerable costs and circumvent at least two lengthy processes during algae‐based oil production. This article provides an overview on recent progress that has been made on the extraction of lipids from wet algal biomass. The biggest contributing factors appear to be the composition of algal cell walls, pre‐treatments of biomass and the use of solvents (e.g. a solvent mixture or solvent‐free lipid extraction). We compare recently developed wet extraction processes for oleaginous microalgae and make recommendations towards future research to improve lipid extraction from wet algal biomass.  相似文献   
15.
16.
Plant pathogenic fungi of the genus Fusarium can cause severe diseases on small grain cereals and maize. The contamination of harvested grain with Fusarium mycotoxins is a threat to human and animal health. In wheat production of the toxin deoxynivalenol (DON), which inhibits eukaryotic protein biosynthesis, is a virulence factor of Fusarium, and resistance against DON is considered to be part of Fusarium resistance. Previously, single amino acid changes in RPL3 (ribosomal protein L3) conferring DON resistance have been described in yeast. The goal of this work was to characterize the RPL3 gene family from wheat and to investigate the potential role of naturally existing RPL3 alleles in DON resistance by comparing Fusarium-resistant and susceptible cultivars. The gene family consists of three homoeologous alleles of both RPL3A and RPL3B, which are located on chromosomes 4A (RPL3-B2), 4B (RPL3-B1), 4D (RPL3-B3), 5A (RPL3-A3), 5B (RPL3-A2) and 5D (RPL3-A1). Alternative splicing was detected in the TaRPL3-A2 gene. Sequence comparison revealed no amino acid differences between cultivars differing in Fusarium resistance. While using developed SNP markers we nevertheless found that one of the genes, namely, TaRPL3-A3 mapped close to a Fusarium resistance QTL (Qfhs.ifa-5A). The potential role of the RPL3 gene family in DON resistance of wheat is discussed.  相似文献   
17.
Molecular Biology Reports - Evidence has validated the prophylactic effects of exercising on different aspects of health. On the opposite side, immobilization may lead to various destructive...  相似文献   
18.
A new species of galumnid mite (Acari: Oribatida: Galumnidae), Pergalumna persica sp. n., is described from Fars province, southern Iran. The new species is characterised by a pointed rostrum, minute interlamellar setae, medium long, setiform sensilla, with finely barbed, slightly dilated head, complete dorsosejugal suture, large, nearly elongate-triangular areae porosae Aa, absence of median pore, and large body size.  相似文献   
19.
Virulence-associated genes in bacteria are often located on chromosomal regions, termed pathogenicity islands (PAIs). Several PAIs are found in Escherichia coli strains that cause extraintestinal infections, but their role in commensal bowel colonization is unknown. Resident strains are enriched in adhesins (P fimbriae and type 1 fimbriae), capsular antigens (K1 and K5), hemolysin, and aerobactin and mostly belong to phylogenetic group B2. Here, we investigated whether six pathogenicity islands and the virulence determinants malX and usp are associated with fitness of E. coli in the infant bowel microbiota. E. coli strains isolated from stools of 130 Swedish infants during the first year of life were examined for their carriage of PAI markers, malX, and usp by PCR. Carriage was related to strain persistence: long-term colonizers (≥12 months) carried significantly more of PAI II from strain CFT703 (II(CFT703)), IV(536,) and II(J96) and malX and usp than intermediate colonizers (1 to 11 months) and transient strains (<3 weeks). The accumulation of PAI markers in each individual strain correlated positively with its time of persistence in the colon. Phylogenetic group B2 accounted for 69% of long-term colonizers, 46% of intermediate colonizers and 14% of transient strains. These results support the hypothesis that some bacterial traits contributing to extraintestinal infections have in fact evolved primarily because they increase the fitness of E. coli in its natural niche, the colon; accordingly, they may be regarded as fitness islands in the gut.  相似文献   
20.
Background

The increasing need for therapeutic monoclonal antibodies (mAbs) entails the development of innovative and improved expression strategies. Chromatin insulators have been utilized for the enhancement of the heterologous proteins in mammalian cells.

Methods and results

In the current study the Ccnb1ip1 gene insulator element was utilized to construct a novel vector system for the expression of an anti-CD52 mAb in Chinese hamster ovary (CHO) cells. The insulator containing (pIns-mAb) and control (pmAb) vectors were generated and stable cell pools were established using these constructs. The expression level in the cells created with pIns-mAb vector was calculated to be 233 ng/mL, and the expression rate in the control vector was 210 ng/mL, which indicated a 10.9% increase in mAb expression in pIns-mAb pool. In addition, analysis of mAb expression in clonal cells established from each pool showed a 10% increase in antibody productivity in the highest mAb producing clone derived from the pIns-mAb pool compared to the clone isolated from pmAb pool.

Conclusions

More studies are needed to fully elucidate the effects of Ccnb1ip1 gene insulator on recombinant therapeutic protein expression in mammalian cells. The combination of this element with other chromatin-modifying elements might improve its augmentation effect which could pave the way for efficient and cost-effective production of therapeutic drugs.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号