首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   2篇
  25篇
  2023年   1篇
  2017年   1篇
  2016年   2篇
  2015年   2篇
  2014年   3篇
  2013年   4篇
  2011年   1篇
  2010年   2篇
  2009年   1篇
  2008年   2篇
  2007年   1篇
  2003年   1篇
  2001年   1篇
  1997年   1篇
  1986年   1篇
  1981年   1篇
排序方式: 共有25条查询结果,搜索用时 15 毫秒
11.
We have studied the spatial distribution of IS1 elements in the genomes of natural isolates comprising the ECOR reference collection of Escherichia coli. We find evidence for nonrandomness at three levels. Many pairs of IS1 elements are in much closer proximity (< 10 kb) than can be accounted for by chance. IS1 elements in close proximity were identified by long-range PCR amplification of the genomic sequence between them. Each amplified region was sequenced and its map location determined by database screening of DNA hybridization. Among the ECOR strains with at least two IS1 elements, 54% had one or more pairs of elements separated by < 10 kb. We propose that this type of clustering is a result of "local hopping," in which we assume that a significant proportion of tranposition events leads to the insertion of a daughter IS element in the vicinity of the parental element. A second level of nonrandomness is found in strains with a modest number of IS1 elements that are mapped through the use of inverse PCR to amplify flanking genomic sequences: in these strains, the insertion sites tend to be clustered over a smaller region of chromosome than would be expected by chance. A third level of nonrandomness is observed in the composite distribution of IS elements across strains: among 20 mapped IS1 elements, none were found in the region of 48-77 minutes, a significant gap. One region of the E. coli chromosome, at 98 min, had a cluster of IS1 elements in seven ECOR strains of diverse phylogenetic origin. We deduce from sequence analysis that this pattern of distribution is a result of initial insertion in the most recent common ancestor of these strains and therefore not a hot spot of insertion. Analysis using long- range PCR with primers for IS2 and IS3 also yielded pairs of elements in close proximity, suggesting that these elements may also occasionally transpose by local hopping.   相似文献   
12.
Escherichia coli was used as a microbial system for the heterologous synthesis of β-phellandrene, a monoterpene of plant origin with several potential commercial applications. Expression of Lavandula angustifolia β-phellandrene synthase (PHLS), alone or in combination with Picea abies geranyl-diphosphate synthase in E. coli, resulted in no β-phellandrene accumulation, in sharp contrast to observations with PHLS-transformed cyanobacteria. Lack of β-phellandrene biosynthesis in E. coli was attributed to the limited endogenous carbon partitioning through the native 2-C-methylerythritol-4-phosphate (MEP) pathway. Heterologous co-expression of the mevalonic acid pathway, enhancing cellular carbon partitioning and flux toward the universal isoprenoid precursors, isopentenyl-diphosphate and dimethylallyl-diphosphate, was required to confer β-phellandrene production. Differences in endogenous carbon flux toward the synthesis of isoprenoids between photosynthetic (Synechocystis) and non-photosynthetic bacteria (E. coli) are discussed in terms of differences in the regulation of carbon partitioning through the MEP biosynthetic pathway in the two systems.  相似文献   
13.
The pain phenotype in sickle cell disease (SCD) patients is highly variable. A small percentage of SCD patients experience many vaso-occlusive crises/year, 5% of patients account for over 30% of pain episodes, while 39% report few episodes of severe pain. Clearly, a better understanding of the pathobiology of SCD is needed to improve its therapy. Humanized sickle cell mice recapitulate several phenotypes of SCD patients and provide a model for the study of SCD pain. Researchers have shown that one strain of humanized SCD mice, the BERK strain, has abnormal pain phenotype. However, the nociception phenotype of another humanized SCD mouse strain, the Townes strain, has not been described. In a large cross-sectional study of BERK and Townes SCD mice, we examined thermosensory response and sensory nerve fiber function using sine-wave electrical stimulation at 2000, 250, and 5 Hz to stimulate preferentially Aβ, Aδ, and C sensory nerve fibers, respectively. We found that BERK and Townes mice, compared to respective controls, had decreases in 2000, 250, and 5 Hz current vocalization thresholds in patterns that suggest sensitization of a broad spectrum of sensory nerve fibers. In addition, the pattern of sensitization of sensory fibers varied according to strain, sex, age, and mouse genotype. In a similarly variable pattern, Townes and BERKs also had significantly altered sensitivity to noxious thermal stimuli in agreement with what has been shown by others. In summary, the analysis of somatosensory function using sine-wave electrical stimulation in humanized sickle cell mice suggests that in SCD, both myelinated and unmyelinated, fibers are sensitized. The pattern of sensory fiber sensitization is distinct from that observed in pain models of neuropathic and inflammatory pain. These findings raise the possibility that sensitization of a broad spectrum of sensory fibers might contribute to the altered and variable nociception phenotype in SCD.  相似文献   
14.
Multiplexed quantitative proteomics using tandem mass tag (TMT) is increasingly used in –omic study of complex samples. While TMT-based proteomics has the advantages of the higher quantitative accuracy, fewer missing values, and reduced instrument analysis time, it is limited by the additional reagent cost. In addition, current TMT labeling workflows involve repeated small volume pipetting of reagents in volatile solvents, which may increase the sample-to-sample variations and is not readily suitable for high throughput applications. In this study, we demonstrated that the TMT labeling procedures could be streamlined by using pre-aliquoted dry TMT reagents in a 96 well plate or 12-tube strip. As little as 50 μg dry TMT per channel was used to label 6–12 μg peptides, yielding high TMT labeling efficiency (∼99%) in both microbiome and mammalian cell line samples. We applied this workflow to analyze 97 samples in a study to evaluate whether ice recrystallization inhibitors improve the cultivability and activity of frozen microbiota. The results demonstrated tight sample clustering corresponding to groups and consistent microbiome responses to prebiotic treatments. This study supports the use of TMT reagents that are pre-aliquoted, dried, and stored for robust quantitative proteomics and metaproteomics in high throughput applications.  相似文献   
15.
The genetic variability of the Brazilian physic nut (Jatropha curcas) germplasm bank (117 accessions) was assessed using a combination of phenotypic and molecular data. The joint dissimilarity matrix showed moderate correlation with the original matrices of phenotypic and molecular data. However, the correlation between the phenotypic dissimilarity matrix and the genotypic dissimilarity matrix was low. This finding indicated that molecular markers (RAPD and SSR) did not adequately sample the genomic regions that were relevant for phenotypic differentiation of the accessions. The dissimilarity values of the joint dissimilarity matrix were used to measure phenotypic + molecular diversity. This diversity varied from 0 to 1.29 among the 117 accessions, with an average dissimilarity among genotypes of 0.51. Joint analysis of phenotypic and molecular diversity indicated that the genetic diversity of the physic nut germplasm was 156% and 64% higher than the diversity estimated from phenotypic and molecular data, respectively. These results show that Jatropha genetic variability in Brazil is not as limited as previously thought.  相似文献   
16.
Faecal pellet counts have been widely used to monitor the abundances of introduced ungulates in New Zealand, but ground-based sampling cannot be conducted safely in the steep non-forest habitats that are common in New Zealand's Southern Alps. Helicopter counts may be an effective technique for monitoring ungulates in steep non-forest habitat. We evaluated the relationship between faecal pellet and helicopter counts of ungulates (primarily feral goat Capra hircus) at 12 non-forest sites in the Southern Alps. Within each site we counted the numbers of ungulates from a helicopter on three occasions and the number of intact faecal pellets along 30 transects. Mean observed densities of feral goats derived from helicopter counts ranged from 0.0 to 20.2 km?2. There was a positive curvilinear (concave down) relationship between faecal pellet and helicopter counts. Compared with faecal pellet counts, helicopter counts were cheaper, could identify ungulate species and provided estimates of absolute density. Helicopter counts are a cost-effective method for monitoring ungulates in the steep non-forest habitats of New Zealand's Southern Alps.  相似文献   
17.

Background  

The persistence of cooperative relationships is an evolutionary paradox; selection should favor those individuals that exploit their partners (cheating), resulting in the breakdown of cooperation over evolutionary time. Our current understanding of the evolutionary stability of mutualisms (cooperation between species) is strongly shaped by the view that they are often maintained by partners having mechanisms to avoid or retaliate against exploitation by cheaters. In contrast, we empirically and theoretically examine how additional symbionts, specifically specialized parasites, potentially influence the stability of bipartite mutualistic associations. In our empirical work we focus on the obligate mutualism between fungus-growing ants and the fungi they cultivate for food. This mutualism is exploited by specialized microfungal parasites (genus Escovopsis) that infect the ant's fungal gardens. Using sub-colonies of fungus-growing ants, we investigate the interactions between the fungus garden parasite and cooperative and experimentally-enforced uncooperative ("cheating") pairs of ants and fungi. To further examine if parasites have the potential to help stabilize some mutualisms we conduct Iterative Prisoner's Dilemma (IPD) simulations, a common framework for predicting the outcomes of cooperative/non-cooperative interactions, which incorporate parasitism as an additional factor.  相似文献   
18.
19.
Microalgae have a valuable potential for biofuels production. As a matter of fact, algae can produce different molecules with high energy content, including molecular hydrogen (H(2)) by the activity of a chloroplastic hydrogenase fueled by reducing power derived from water and light energy. The efficiency of this reaction, however, is limited and depends from an intricate relationships between oxygenic photosynthesis and mitochondrial respiration. The way toward obtaining algal strains with high productivity in photobioreactors requires engineering of their metabolism at multiple levels in a process comparable to domestication of crops that were derived from their wild ancestors through accumulation of genetic traits providing improved productivity under conditions of intensive cultivation as well as improved nutritional/industrial properties. This holds true for the production of any biofuels from algae: there is the need to isolate multiple traits to be combined and produce organisms with increased performances. Among the different limitations in H(2) productivity, we identified three with a major relevance, namely: (i) the light distribution through the mass culture; (ii) the strong sensitivity of the hydrogenase to even very low oxygen concentrations; and (iii) the presence of alternative pathways, such as the cyclic electron transport, competing for reducing equivalents with hydrogenase and H(2) production. In order to identify potentially favorable mutations, we generated a collection of random mutants in Chlamydomonas reinhardtii which were selected through phenotype analysis for: (i) a reduced photosynthetic antenna size, and thus a lower culture optical density; (ii) an altered photosystem II activity as a tool to manipulate the oxygen concentration within the culture; and (iii) State 1-State 2 transition mutants, for a reduced cyclic electron flow and maximized electrons flow toward the hydrogenase. Such a broad approach has been possible thanks to the high throughput application of absorption/fluorescence optical spectroscopy methods. Strong and weak points of this approach are discussed.  相似文献   
20.

Background  

Mites (Acari) have traditionally been treated as monophyletic, albeit composed of two major lineages: Acariformes and Parasitiformes. Yet recent studies based on morphology, molecular data, or combinations thereof, have increasingly drawn their monophyly into question. Furthermore, the usually basal (molecular) position of one or both mite lineages among the chelicerates is in conflict to their morphology, and to the widely accepted view that mites are close relatives of Ricinulei.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号