首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20049篇
  免费   1666篇
  国内免费   5篇
  21720篇
  2023年   88篇
  2022年   233篇
  2021年   432篇
  2020年   233篇
  2019年   306篇
  2018年   423篇
  2017年   354篇
  2016年   636篇
  2015年   1031篇
  2014年   1170篇
  2013年   1409篇
  2012年   1747篇
  2011年   1649篇
  2010年   1062篇
  2009年   936篇
  2008年   1264篇
  2007年   1291篇
  2006年   1105篇
  2005年   1060篇
  2004年   1034篇
  2003年   937篇
  2002年   891篇
  2001年   203篇
  2000年   144篇
  1999年   153篇
  1998年   233篇
  1997年   150篇
  1996年   138篇
  1995年   126篇
  1994年   114篇
  1993年   102篇
  1992年   81篇
  1991年   67篇
  1990年   70篇
  1989年   61篇
  1988年   52篇
  1987年   57篇
  1986年   45篇
  1985年   47篇
  1984年   44篇
  1983年   70篇
  1982年   40篇
  1981年   36篇
  1980年   38篇
  1979年   29篇
  1978年   42篇
  1977年   37篇
  1976年   32篇
  1975年   25篇
  1974年   27篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
121.
We characterized a gene encoding an YchF-related protein, TcYchF, potentially associated with the protein translation machinery of Trypanosoma cruzi. YchF belongs to the translation factor-related (TRAFAC) class of P-loop NTPases. The coding region of the gene is 1185 bp long and encodes a 44.3 kDa protein. BlastX searches showed TcYchF to be very similar (45-86%) to putative GTP-binding proteins from eukaryotes, including some species of trypanosomatids (Leishmania major and Trypanosoma brucei). A lower but significant level of similarity (38-43%) was also found between the predicted sequences of TcYchF and bacterial YyaF/YchF GTPases of the Spo0B-associated GTP-binding protein (Obg) family. Some of the most important features of the G domain of this family of GTPases are conserved in TcYchF. However, we found that TcYchF preferentially hydrolyzed ATP rather than GTP. The function of YyaF/YchF is unknown, but other members of the Obg family are known to be associated with ribosomal subunits. Immunoblots of the polysome fraction from sucrose gradients showed that TcYchF was associated with ribosomal subunits and polysomes. Immunoprecipitation assays showed that TcYchF was also associated with the proteasome of T. cruzi. Furthermore, inactivation of the T. brucei homolog of TcYchF by RNA interference inhibited the growth of procyclic forms of the parasite. These data suggest that this protein plays an important role in the translation machinery of trypanosomes.  相似文献   
122.
Since its outbreak in 2019, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) keeps surprising the medical community by evolving diverse immune escape mutations in a rapid and effective manner. To gain deeper insight into mutation frequency and dynamics, we isolated ten ancestral strains of SARS-CoV-2 and performed consecutive serial incubation in ten replications in a suitable and common cell line and subsequently analysed them using RT-qPCR and whole genome sequencing. Along those lines we hoped to gain fundamental insights into the evolutionary capacity of SARS-CoV-2 in vitro. Our results identified a series of adaptive genetic changes, ranging from unique convergent substitutional mutations and hitherto undescribed insertions. The region coding for spike proved to be a mutational hotspot, evolving a number of mutational changes including the already known substitutions at positions S:484 and S:501. We discussed the evolution of all specific adaptations as well as possible reasons for the seemingly inhomogeneous potential of SARS-CoV-2 in the adaptation to cell culture. The combination of serial passage in vitro with whole genome sequencing uncovers the immense mutational potential of some SARS-CoV-2 strains. The observed genetic changes of SARS-CoV-2 in vitro could not be explained solely by selectively neutral mutations but possibly resulted from the action of directional selection accumulating favourable genetic changes in the evolving variants, along the path of increasing potency of the strain. Competition among a high number of quasi-species in the SARS-CoV-2 in vitro population gene pool may reinforce directional selection and boost the speed of evolutionary change.  相似文献   
123.
The first committed step of lipid A biosynthesis in Gram-negative bacteria is catalyzed by the zinc-dependent hydrolase LpxC that removes an acetate from the nitrogen at the 2' '-position of UDP-3-O-acyl-N-acetylglucosamine. Recent structural characterization by both NMR and X-ray crystallography provides many important details about the active site environment of LpxC from Aquifex aeolicus, a heat-stable orthologue that displays 32% sequence identity to LpxC from Escherichia coli. The detailed reaction mechanism and specific roles of active site residues for LpxC from A. aeolicus are further analyzed here. The pH dependencies of k(cat)/K(M) and k(cat) for the deacetylation of the substrate UDP-3-O-[(R)-3-hydroxymyristoyl]-GlcNAc are both bell-shaped. The ascending acidic limb (pK(1)) was fitted to 6.1 +/- 0.2 for k(cat) and 5.7 +/- 0.2 for k(cat)/K(M). The descending basic limb (pK(2)) was fitted to 8.0 +/- 0.2 for k(cat) and 8.4 +/- 0.2 for k(cat)/K(M). The pH dependence of the E73A mutant exhibits loss of the acidic limb, and the mutant retains only 0.15% activity versus the wild type. The pH dependencies of the other active site mutants H253A, K227A, H253A/K227A, and D234N remain bell-shaped, although their significantly lower activities (0.25%, 0.05%, 0.007%, and 0.57%, respectively) suggest that they contribute significantly to catalysis. Our cumulative data support a mechanism for LpxC wherein Glu73 serves as the general base for deprotonation and activation of the zinc-bound water.  相似文献   
124.
In higher plants, the PII protein is a nuclear-encoded plastid protein that regulates the activity of a key enzyme of arginine biosynthesis. We have previously observed that Arabidopsis PII mutants are more sensitive to nitrite toxicity. Using intact chloroplasts isolated from Arabidopsis leaves and (15)N-labelled nitrite we show that a light-dependent nitrite uptake into chloroplasts is increased in PII knock-out mutants when compared to the wild-type. This leads to a higher incorporation of (15)N into ammonium and amino acids in the mutant chloroplasts. However, the uptake differences do not depend on GS/GOGAT activities. Our observations suggest that PII is involved in the regulation of nitrite uptake into higher plant chloroplasts.  相似文献   
125.
Ra-KLP, a 75 amino acid protein secreted by the salivary gland of the brown ear tick Rhipicephalus appendiculatus has a sequence resembling those of Kunitz/BPTI proteins. We report the detection, purification and characterization of the function of Ra-KLP. In addition, determination of the three-dimensional crystal structure of Ra-KLP at 1.6 Å resolution using sulphur single-wavelength anomalous dispersion reveals that much of the loop structure of classical Kunitz domains, including the protruding protease-binding loop, has been replaced by β-strands. Even more unusually, the N-terminal portion of the polypeptide chain is pinned to the ”Kunitz head” by two disulphide bridges not found in classical Kunitz/BPTI proteins. The disulphide bond pattern has been further altered by the loss of the bridge that normally stabilizes the protease-binding loop. Consistent with the conversion of this loop into a β-strand, Ra-KLP shows no significant anti-protease activity; however, it activates maxiK channels in an in vitro system, suggesting a potential mechanism for regulating host blood supply during feeding.  相似文献   
126.
127.
128.
The role of inflammation and oxidative stress in the development of obesity and associated metabolic disorders is under debate. We investigated the redox metabolism in a non-diabetic obesity model, i.e. 11-week-old obese Zucker rats. Antioxidant enzyme activities, lipophilic antioxidant (alpha-tocopherol, coenzymes Q) and hydrophilic antioxidant (glutathione, vitamin C) contents and their redox state (% oxidized form), were studied in inguinal white fat and compared with blood and liver. The adipose tissues of obese animals showed a specific higher content of hydrophilic molecules in a lower redox state than those of lean animals, which were associated with lower lipophilic molecule content and lipid peroxidation. Conversely and as expected, glutathione content decreased and its redox state increased in adipose tissues of rats subjected to lipopolysaccharide-induced systemic oxidative stress. In these in vivo models, oxidative stress and obesity thus had opposite effects on adipose tissue redox state. Moreover, the increase in glutathione content and the decrease of its redox state by antioxidant treatment promoted in vitro the accumulation of triglycerides in preadipocytes. Taken together and contrary to the emergent view, our results suggest that obesity is associated with an intracellular reduced redox state that promotes on its own the development of a deleterious proadipogenic process.  相似文献   
129.
130.
Wetland ecosystems in agricultural areas often become progressively more isolated from main water bodies. Stagnation favors the accumulation of organic matter as the supply of electron acceptors with water renewal is limited. In this context it is expected that nitrogen recycling prevails over nitrogen dissipation. To test this hypothesis, denitrification rates, fluxes of dissolved oxygen (SOD), inorganic carbon (DIC) and nitrogen and sediment features were measured in winter and summer 2007 on 22 shallow riverine wetlands in the Po River Plain (Northern Italy). Fluxes were determined from incubations of intact cores by measurement of concentration changes or isotope pairing in the case of denitrification. Sampled sites were eutrophic to hypertrophic; 10 were connected and 12 were isolated from the adjacent rivers, resulting in large differences in nitrate concentrations in the water column (from <5 to 1,133 μM). Benthic metabolism and denitrification rates were investigated by two overarching factors: season and hydrological connectivity. SOD and DIC fluxes resulted in respiratory quotients greater than one at most sampling sites. Sediment respiration was coupled to both ammonium efflux, which increased from winter to summer, and nitrate consumption, with higher rates in river-connected wetlands. Denitrification rates measured in river-connected wetlands (35–1,888 μmol N m?2 h?1) were up to two orders of magnitude higher than rates measured in isolated wetlands (2–231 μmol N m?2 h?1), suggesting a strong regulation of the process by nitrate availability. These rates were also significantly higher in summer (9–1,888 μmol N m?2 h?1) than in winter (2–365 μmol N m?2 h?1). Denitrification supported by water column nitrate (DW) accounted for 60–100% of total denitrification (Dtot); denitrification coupled to nitrification (DN) was probably controlled by limited oxygen availability within sediments. Denitrification efficiency, calculated as the ratio between N removal via denitrification and N regeneration, and the relative role of denitrification for organic matter oxidation, were high in connected wetlands but not in isolated sites. This study confirms the importance of restoring hydraulic connectivity of riverine wetlands for the maintenance of important biogeochemical functions such as nitrogen removal via denitrification.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号