首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   71篇
  免费   6篇
  2021年   1篇
  2019年   1篇
  2016年   2篇
  2015年   5篇
  2014年   10篇
  2013年   5篇
  2012年   2篇
  2011年   4篇
  2010年   8篇
  2009年   5篇
  2008年   4篇
  2007年   1篇
  2006年   2篇
  2005年   4篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
  2001年   2篇
  2000年   1篇
  1999年   2篇
  1996年   1篇
  1995年   1篇
  1992年   1篇
  1991年   4篇
  1990年   1篇
  1985年   1篇
  1982年   1篇
  1978年   1篇
  1977年   1篇
  1975年   1篇
  1974年   1篇
排序方式: 共有77条查询结果,搜索用时 156 毫秒
51.
MicroRNA transcriptome profiles during swine skeletal muscle development   总被引:4,自引:0,他引:4  

Background

Dietary polyunsaturated fatty acids (PUFA), in particular the long chain marine fatty acids docosahexaenoic (DHA) and eicosapentaenoic (EPA), are linked to many health benefits in humans and in animal models. Little is known of the molecular response to DHA and EPA of the small intestine, and the potential contribution of this organ to the beneficial effects of these fatty acids. Here, we assessed gene expression changes induced by DHA and EPA in the wildtype C57BL/6J murine small intestine using whole genome microarrays and functionally characterized the most prominent biological process.

Results

The main biological process affected based on gene expression analysis was lipid metabolism. Fatty acid uptake, peroxisomal and mitochondrial beta-oxidation, and omega-oxidation of fatty acids were all increased. Quantitative real time PCR, and -in a second animal experiment- intestinal fatty acid oxidation measurements confirmed significant gene expression differences and showed in a dose-dependent manner significant changes at biological functional level. Furthermore, no major changes in the expression of lipid metabolism genes were observed in the colon.

Conclusion

We show that marine n-3 fatty acids regulate small intestinal gene expression and increase fatty acid oxidation. Since this organ contributes significantly to whole organism energy use, this effect on the small intestine may well contribute to the beneficial physiological effects of marine PUFAs under conditions that will normally lead to development of obesity, insulin resistance and diabetes.  相似文献   
52.
Purified (Na+, K+)-ATPase was studied by electron microscopy after thin sectioning, negative staining, and freeze-fracturing, particular emphasis being paid to the dimensions and frequencies of substructures in the membranes. Ultrathin sections show exclusively flat or cup-shaped membrane fragments which are triple-layered along much of their length and have diameters of 0.1-0.6 μm. Negative staining revealed a distinct substructure of particles with diameters between 30 and 50 A and with a frequency of 12,500 +/- 2,400 (SD) per μm(2). Comparisons with sizes of the protein components suggest that each surface particle contains as its major component one large catalytic chain with mol wt close to 100,000 and that two surface particles unite to form the unit of (Na+,K+)-ATPase which binds one molecule of ATP or ouabain. The further observations that the surface particles protrude from the membrane surface and are observed on both membrane surfaces in different patterns and degrees of clustering suggest that protein units span the membrane and are capable of lateral mobility. Freeze-fracturing shows intramembranous particles with diameters of 90-110 A and distributed on both concave and convex fracture faces with a frequency of 3,410 +/- 370 per μm(2) and 390 +/- 170 per μm(2), respectively. The larger diameters and three to fourfold smaller frequency of the intramembranous particles as compared to the surface particles seen after negative staining may reflect technical differences between methods, but it is more likely that the intramembranous particle is an oliogomer composed of two or even more of the protein units which form the surface particles.  相似文献   
53.
Conodont affinity and chordate phylogeny   总被引:7,自引:0,他引:7  
Current information on the conodonts Clydagnathus windsorensis (Globensky) and Promissum pulchrum Kovács‐ Endrödy, together with the latest interpretations of conodont hard tissues, are reviewed and it is concluded that sufficient evidence exists to justify interpretation of the conodonts on a chordate model. A new phylogenetic analysis is undertaken, consisting of 17 chordate taxa and 103 morphological, physiological and biochemical characters; conodonts are included as a primary taxon. Various experiments with character coding, taxon deletion and the use of constraint trees are carried out. We conclude that conodonts are cladistically more derived than either hagfishes or lampreys because they possess a mineralised dermal skeleton and that they are the most plesiomorphic member of the total group Gnathostomata. We discuss the evolution of the nervous and sensory systems and the skeleton in the context of our optimal phylogenetic tree. There appears to be no simple evolution of free to canal‐enclosed neuromasts; organised neuromasts within canals appear to have arisen at least three times from free neuromasts or neuromasts arranged within grooves. The mineralised vertebrate skeleton first appeared as odontodes of dentine or dentine plus enamel in the paraconodont/euconodont feeding apparatus. Bone appeared later, co‐ordinate with the development of a dermal skeleton, and it appears to have been primitively acellular. Atubular dentine is more primitive than tubular dentine. However, the subsequent distribution of the different types of dentine (e.g. mesodentine, orthodentine), suggests that these tissue types are homoplastic. The topology of relationships and known stratigraphic ranges of taxa in our phylogeny predict the existence of myxinoids and petromyzontids in the Cambrian.  相似文献   
54.
Molecular dynamics simulations using a simple multielement model solute with internal degrees of freedom and accounting for solvent-induced interactions to all orders in explicit water are reported. The potential energy landscape of the solute is flat in vacuo. However, the sole untruncated solvent-induced interactions between apolar (hydrophobic) and charged elements generate a rich landscape of potential of mean force exhibiting typical features of protein landscapes. Despite the simplicity of our solute, the depth of minima in this landscape is not far in size from free energies that stabilize protein conformations. Dynamical coupling between configurational switching of the system and hydration reconfiguration is also elicited. Switching is seen to occur on a time scale two orders of magnitude longer than that of the reconfiguration time of the solute taken alone, or that of the unperturbed solvent. Qualitatively, these results are unaffected by a different choice of the water-water interaction potential. They show that already at an elementary level, solvent-induced interactions alone, when fully accounted for, can be responsible for configurational and dynamical features essential to protein folding and function.  相似文献   
55.
Posterior distribution of hierarchical models using CAR(1) distributions   总被引:1,自引:0,他引:1  
Sun  D; Tsutakawa  RK; Speckman  PL 《Biometrika》1999,86(2):341-350
  相似文献   
56.
Despite increasing frequency of invasions by alien plant species with widespread ecological and economic consequences, it remains unclear how belowground compartments of ecosystems are impacted. In order to synthetize current knowledge and provide future directions for research we performed a meta‐analysis assessing the impact of invasive alien plant species on soil fauna abundance. Compared to previous synthesis on this topic, we included together in our model the trophic group of each soil faunal taxa (from herbivores to predators) and habitat structure, namely open and closed habitats (i.e. grass and shrub dominated areas versus forested areas). In doing so, we highlighted that both moderators strongly interact to determine the response of soil fauna to the presence of invasive alien plants. Soil fauna abundance increase in the presence of invasive species only in closed habitats (+18.2%). This pattern of habitat‐dependent response (positive effect in closed habitats) was only found for primary consumers (i.e. herbivores +29.1% and detritivores +66.7%) within both detritus‐based and live root‐based trophic pathways. Abundances of predators and microbivores did not respond to the presence of IAS irrespective of habitat structure. For several groups, the habitat structure (open or closed) significantly drove their responses to the presence of invasive alien species. In addition, we carefully considered potential sources of bias (e.g. geographic, taxonomic and functional) within the collected data in an attempt to highlight gaps in available knowledge on the subject. Our findings support the conclusions of previous studies on the subject by demonstrating 1) that soil fauna abundance is impacted by biological invasions, 2) that initial habitat structure has a strong influence on the outcome and 3) that responses within the soil fauna differ between trophic levels with a stronger response of primary consumers.  相似文献   
57.

Background

Differences in linkage disequilibrium and in allele substitution effects of QTL (quantitative trait loci) may hinder genomic prediction across populations. Our objective was to develop a deterministic formula to estimate the accuracy of across-population genomic prediction, for which reference individuals and selection candidates are from different populations, and to investigate the impact of differences in allele substitution effects across populations and of the number of QTL underlying a trait on the accuracy.

Methods

A deterministic formula to estimate the accuracy of across-population genomic prediction was derived based on selection index theory. Moreover, accuracies were deterministically predicted using a formula based on population parameters and empirically calculated using simulated phenotypes and a GBLUP (genomic best linear unbiased prediction) model. Phenotypes of 1033 Holstein-Friesian, 105 Groninger White Headed and 147 Meuse-Rhine-Yssel cows were simulated by sampling 3000, 300, 30 or 3 QTL from the available high-density SNP (single nucleotide polymorphism) information of three chromosomes, assuming a correlation of 1.0, 0.8, 0.6, 0.4, or 0.2 between allele substitution effects across breeds. The simulated heritability was set to 0.95 to resemble the heritability of deregressed proofs of bulls.

Results

Accuracies estimated with the deterministic formula based on selection index theory were similar to empirical accuracies for all scenarios, while accuracies predicted with the formula based on population parameters overestimated empirical accuracies by ~25 to 30%. When the between-breed genetic correlation differed from 1, i.e. allele substitution effects differed across breeds, empirical and deterministic accuracies decreased in proportion to the genetic correlation. Using a multi-trait model, it was possible to accurately estimate the genetic correlation between the breeds based on phenotypes and high-density genotypes. The number of QTL underlying the simulated trait did not affect the accuracy.

Conclusions

The deterministic formula based on selection index theory estimated the accuracy of across-population genomic predictions well. The deterministic formula using population parameters overestimated the across-population genomic accuracy, but may still be useful because of its simplicity. Both formulas could accommodate for genetic correlations between populations lower than 1. The number of QTL underlying a trait did not affect the accuracy of across-population genomic prediction using a GBLUP method.  相似文献   
58.

Background

Genomic selection has become an important tool in the genetic improvement of animals and plants. The objective of this study was to investigate the impacts of breeding value estimation method, reference population structure, and trait genetic architecture, on long-term response to genomic selection without updating marker effects.

Methods

Three methods were used to estimate genomic breeding values: a BLUP method with relationships estimated from genome-wide markers (GBLUP), a Bayesian method, and a partial least squares regression method (PLSR). A shallow (individuals from one generation) or deep reference population (individuals from five generations) was used with each method. The effects of the different selection approaches were compared under four different genetic architectures for the trait under selection. Selection was based on one of the three genomic breeding values, on pedigree BLUP breeding values, or performed at random. Selection continued for ten generations.

Results

Differences in long-term selection response were small. For a genetic architecture with a very small number of three to four quantitative trait loci (QTL), the Bayesian method achieved a response that was 0.05 to 0.1 genetic standard deviation higher than other methods in generation 10. For genetic architectures with approximately 30 to 300 QTL, PLSR (shallow reference) or GBLUP (deep reference) had an average advantage of 0.2 genetic standard deviation over the Bayesian method in generation 10. GBLUP resulted in 0.6% and 0.9% less inbreeding than PLSR and BM and on average a one third smaller reduction of genetic variance. Responses in early generations were greater with the shallow reference population while long-term response was not affected by reference population structure.

Conclusions

The ranking of estimation methods was different with than without selection. Under selection, applying GBLUP led to lower inbreeding and a smaller reduction of genetic variance while a similar response to selection was achieved. The reference population structure had a limited effect on long-term accuracy and response. Use of a shallow reference population, most closely related to the selection candidates, gave early benefits while in later generations, when marker effects were not updated, the estimation of marker effects based on a deeper reference population did not pay off.  相似文献   
59.
It has been recently proposed that the decrease in diversity towards the severe end of the humped-back diversity–biomass model of Grime was driven by a collapse of facilitation due to extreme conditions of either stress or physical disturbance. In order to test the hypothesis that disturbance is the primary direct factor driving the collapse of interactions occurring along environmental severity gradients, we conducted a removal experiment in the highly stressed French coastal dunes along a gradient of disturbance due to sand burial. Four dune species were used as targets and transplanted with and without neighbours in four communities along the gradient. The experiment was conducted twice, a dry and an average year. Results of the experiment showed that during the dry year the effect of the environment was prominent and only one species was facilitated for survival in the least disturbed community. During the average year, interactions for growth were important only in the same community, with positive or negative responses depending on the natural position of the target species within the coastal dune gradient. In accordance with our hypothesis, most interactions for both survival and growth were observed in the least disturbed community exhibiting the highest diversity. There were no interactions in the most disturbed community with the lowest diversity.  相似文献   
60.
Summary During the last 15 years we have gained considerably more knowledge about the anatomy, physiology and molecular sequences of the modern agnathans. This knowledge has been analysed with modern systematic techniques which provide clear, unambiguous statements of relationships. At present there is a conflict between the results obtained using morphological/physiological data and that using molecular data. During the next few years it is likely that more molecular sequences will become available for analysis. Whether this will fuel the conflict or resolve the issue remains to be seen.The great increase in our knowledge of the diversity of fossil agnathans is continuing to provide much new anatomical information and this allows more firmly based phylogenies to be constructed. From these we may be able to delimit more precisely the course of evolutionary changes of functional systems in the early history of vertebrates.Many of our decisions concerning primitiveness or degeneracy of the modern agnathans can be gained through study of the ontogenetic development and the variation between the ontogenies from species to species. Lampreys are relatively well known in this respect. However, we lack comparable detailed studies of the development of hagfishes. A major research field is here waiting to be reaped.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号