首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   528篇
  免费   42篇
  国内免费   5篇
  2023年   2篇
  2022年   4篇
  2021年   16篇
  2020年   5篇
  2019年   5篇
  2018年   10篇
  2016年   16篇
  2015年   19篇
  2014年   24篇
  2013年   20篇
  2012年   31篇
  2011年   40篇
  2010年   25篇
  2009年   31篇
  2008年   29篇
  2007年   27篇
  2006年   20篇
  2005年   28篇
  2004年   28篇
  2003年   26篇
  2002年   24篇
  2001年   12篇
  2000年   12篇
  1999年   10篇
  1998年   5篇
  1997年   5篇
  1996年   6篇
  1995年   2篇
  1993年   5篇
  1992年   4篇
  1991年   3篇
  1990年   7篇
  1989年   2篇
  1988年   3篇
  1987年   6篇
  1986年   2篇
  1985年   4篇
  1984年   3篇
  1983年   6篇
  1982年   6篇
  1981年   3篇
  1980年   3篇
  1979年   3篇
  1978年   2篇
  1977年   3篇
  1976年   3篇
  1975年   3篇
  1972年   4篇
  1968年   3篇
  1965年   2篇
排序方式: 共有575条查询结果,搜索用时 281 毫秒
511.
Maternal hyperlipidemia is a characteristic feature during pregnancy, it has been reported that modification of the maternal lipid profile can induce disturbance during pregnancy. In this study, we evaluated the impact of maternal lipid profile on the placental protein expression of two major receptors in cholesterol metabolism, the low density lipoprotein receptor (LDLr) and the scavenger receptor type B1 (SR-B1). We demonstrate an increase in the level of maternal total circulating cholesterol leads to a significant decrease in the level of the LDLr protein expression, while the level of the SR-BI expression remains unchanged. A similar change, for LDLr, is observed in association with the maternal pre-pregnancy body mass index and weight gain. Our data suggest that the LDLr plays a role in regulating cholesterol delivered to the baby from the placenta.  相似文献   
512.
Metagenomic analyses suggest that the rank-abundance curve for marine phage communities follows a power law distribution. A new type of power law dependence based on a simple model in which a modified version of Lotka-Volterra predator-prey dynamics is sampled uniformly in time is presented. Biologically, the model embodies a kill the winner hypothesis and a neutral evolution hypothesis. The model can match observed power law distributions and uses very few parameters that are readily identifiable and characterize phage ecosystems. The model makes new untested predictions: (1) it is unlikely that the most abundant phage genotype will be the same at different time points and (2) the long-term decay of isolated phage populations follows a power law.  相似文献   
513.

Background and Aims

Adaptation to different pollinators has been hypothesized as one of the main factors promoting the formation of new species in the Cape region of South Africa. Other researchers favour alternative causes such as shifts in edaphic preferences. Using a phylogenetic framework and taking into consideration the biogeographical scenario explaining the distribution of the group as well as the distribution of pollinators, this study compares pollination strategies with substrate adaptations to develop hypotheses of the primary factors leading to speciation in Lapeirousia (Iridaceae), a genus of corm-bearing geophytes well represented in the Cape and presenting an important diversity of pollination syndromes and edaphic preferences.

Methods

Phylogenetic relationships are reconstructed within Lapeirousia using nuclear and plastid DNA sequence data. State-of-the-art methods in biogeography, divergence time estimation, character optimization and diversification rate assessments are used to examine the evolution of pollination syndromes and substrate shifts in the history of the group. Based on the phylogenetic results, ecological factors are compared for nine sister species pairs in Lapeirousia.

Key Results

Seventeen pollinator shifts and ten changes in substrate types were inferred during the evolution of the genus Lapeirousia. Of the nine species pairs examined, all show divergence in pollination syndromes, while only four pairs present different substrate types.

Conclusions

The available evidence points to a predominant influence of pollinator shifts over substrate types on the speciation process within Lapeirousia, contrary to previous studies that favoured a more important role for edaphic factors in these processes. This work also highlights the importance of biogeographical patterns in the study of pollination syndromes.  相似文献   
514.
The CS31A, F17, and F5 adhesins are usually targeted by serology-based methods to detect pathogenic Escherichia coli associated with calf enteritis. However, the virulence traits of the selected isolates are still poorly described. Here, from a set of 349 diarrheagenic E. coli isolates from cattle, we demonstrated a 70.8% concordance rate (Cohen''s kappa, 0.599) between serology- and PCR-based approaches for the detection of adhesins under field conditions. A 79% to 82.4% correspondence between the two methods was found for fimbrial adhesins, whereas major discrepancies (33%) were observed for CS31A-type antigens. Various F17A variants were found, such as F17Ac (20K) (50%), F17Aa (FY) (18.9%), F17Ab (8.1%), and F17Ad (111K) (5.4%), including a high proportion (17.6%) of new F17A internal combinations (F17Aab, F17Aac, and F17Abc) or untypeable variants. In addition, the highest proportion of pathovar-associated virulence factor (VF) genes was observed among E. coli isolates that produced F5/F41 adhesins. A specific link between the heat-stable toxins related to the enterotoxigenic E. coli (ETEC) pathovar and adhesins was identified. STa was significantly linked to F5/F41 and EAST1 to CS31A adhesins (P < 0.001), respectively, whereas NTEC was associated with F17 adhesin (P = 0.001). Clustering between phylogroups according to the adhesin types was also observed. Also, few Shiga toxin-producing E. coli (STEC) or enteropathogenic E. coli (EPEC) pathovars were identified. Finally, no statistically significant difference was observed in the occurrence of extended-spectrum beta lactamase (ESBL) production according to the adhesins expressed by the isolates (P = 0.09). Altogether, this study gives new insights into the relationship between adhesins, VF, and antimicrobial resistance in calf enteritis and supports the need for further standardization of methodologies for such approaches.  相似文献   
515.

Background  

High-throughput sequencing makes it possible to rapidly obtain thousands of 16S rDNA sequences from environmental samples. Bioinformatic tools for the analyses of large 16S rDNA sequence databases are needed to comprehensively describe and compare these datasets.  相似文献   
516.
Many human diseases are caused by pathogens that produce exotoxins. The genes that encode these exotoxins are frequently encoded by mobile DNA elements such as plasmids or phage. Mobile DNA elements can move exotoxin genes among microbial hosts, converting avirulent bacteria into pathogens. Phage and bacteria from water, soil, and sediment environments represent a potential reservoir of phage- and plasmid-encoded exotoxin genes. The genes encoding exotoxins that are the causes of cholera, diphtheria, enterohemorrhagic diarrhea, and Staphylococcus aureus food poisoning were found in soil, sediment, and water samples by standard PCR assays from locations where the human diseases are uncommon or nonexistent. On average, at least one of the target exotoxin genes was detected in approximately 15% of the more than 300 environmental samples tested. The results of standard PCR assays were confirmed by quantitative PCR (QPCR) and Southern dot blot analyses. Agreement between the results of the standard PCR and QPCR ranged from 63% to 84%; and the agreement between standard PCR and Southern dot blots ranged from 50% to 66%. Both the cholera and shiga exotoxin genes were also found in the free phage DNA fraction. The results indicate that phage-encoded exotoxin genes are widespread and mobile in terrestrial and aquatic environments.  相似文献   
517.
In 1975, a recent member of a large group of Crustacea Decapoda was described as Neoglyphea inopinata Forest & de Saint Laurent, until now only known as fossils and presumed extinct since the Eocene. The only known specimen had been collected in the Philippine waters, in 1908, at a depth of 200 m. During the next years, three oceanographical expeditions gave more adult specimens, allowing complete study of the species. From its morphology, it appeared that the status attributed to glypheids in the past in the classification of Decapoda Crustacea was quite erroneous. This group, until then considered as related to Palinurids (rock lobsters) was in fact much closer to Astacids (lobster, crayfish, etc.). In 1982, N. inopinata was recorded from the other side of Equator, from the Timor Sea. In October 2005, a second living species of glypheid was discovered southwest of New Caledonia. It was named Neoglyphea neocaledonica B. Richer de Forges, 2006. However, important and significant differences set apart the two species, especially the ornamentation of the cephalothorax, the conformation of the cephalic part and the proportions of epistom and thoracic appendages, being much more robust. It seems justified to establish, for the more recently described species, a new genus, Laurentaeglyphea, much closer to fossil forms.  相似文献   
518.
Mcl-1 is a member of the Bcl2-related protein family that is a critical mediator of cell survival. Exposure of cells to stress causes inhibition of Mcl-1 mRNA translation and rapid destruction of Mcl-1 protein by proteasomal degradation mediated by a phosphodegron created by glycogen synthase kinase 3 (GSK3) phosphorylation of Mcl-1. Here we demonstrate that prior phosphorylation of Mcl-1 by the c-Jun N-terminal protein kinase (JNK) is essential for Mcl-1 phosphorylation by GSK3. Stress-induced Mcl-1 degradation therefore requires the coordinated activity of JNK and GSK3. Together, these data establish that Mcl-1 functions as a site of signal integration between the proapoptotic activity of JNK and the prosurvival activity of the AKT pathway that inhibits GSK3.Mcl-1 is an antiapoptotic member of the Bcl2 family. Gene knockout studies of mice demonstrate that Mcl-1 is essential for embryonic development and for the survival of hematopoietic cells (28-30). Studies of the stress response have demonstrated that Mcl-1 plays an important role in the sensitization of cells to apoptotic signals (1, 11, 25). Thus, exposure to UV radiation causes the rapid degradation of Mcl-1 and the release of proapoptotic partner proteins from Mcl-1 complexes (e.g., Bim). The mechanism of rapid Mcl-1 destruction is mediated by the combined actions of two different pathways. First, the exposure to stress causes phosphorylation of the alpha subunit of eukaryotic initiation factor 2 (eIF-2α) on the inhibitory site Ser-51 that prevents translation of Mcl-1 mRNA (1, 11, 25). Second, Mcl-1 is rapidly degraded by the ubiquitin-dependent proteasome pathway (27). Together, these pathways cause a rapid reduction in Mcl-1 expression. This loss of Mcl-1 may be a required initial response for the apoptosis of cells exposed to stress (25).The E3 ubiquitin protein ligase Mule/ARF-BP1 contains a BH3 domain that interacts with Mcl-1 and can initiate ubiquitin-dependent degradation of Mcl-1 (39). Recent studies have demonstrated that rapid stress-induced degradation of Mcl-1 is mediated by an alternative pathway involving the E3 ubiquitin protein ligase β-TrCP, which binds a stress-induced phosphodegron created by the phosphorylation of Mcl-1 by glycogen synthase kinase 3 (GSK3) (7, 21). How the exposure to stress causes GSK3-mediated phosphorylation of Mcl-1 is unclear, but GSK3 has been shown to directly phosphorylate Mcl-1 (7, 21). Mcl-1 phosphorylation and degradation may therefore be controlled by the prosurvival AKT pathway, which can negatively regulate GSK3 (7, 21).Mcl-1 is critically involved in the regulation of cell survival and is therefore subject to regulation by multiple mechanisms (26). Thus, Mcl-1 gene expression is regulated by many growth factors and cytokines (26), and Mcl-1 mRNA is regulated by microRNA pathways (24). The Mcl-1 protein is stabilized by binding TCTP (20) and the BH3-only protein Bim (4). In contrast, the BH3-only protein Noxa binds and destabilizes Mcl-1 (4, 36). Moreover, it is established that Mcl-1 is phosphorylated by several protein kinases on sites that may regulate Mcl-1 function. Phosphorylation of human Mcl-1 (hMcl-1) on Ser-64 (a site that is not conserved in other species) may enhance antiapoptotic activity by increasing the interaction of Mcl-1 with Bim, Noxa, and Bak (18). Phosphorylation on Ser-121 and Thr-163 may inhibit the antiapoptotic activity of hMcl-1 (15), and phosphorylation on Thr-163 may increase hMcl-1 protein stability (9). The conserved GSK3 phosphorylation site Ser-159 (and possibly Ser-155) can initiate rapid proteasomal degradation of hMcl-1 (7, 21). Together, these findings suggest that the function of Mcl-1 is very tightly regulated.The results of previous studies have implicated the c-Jun N-terminal protein kinase (JNK) in the regulation of Mcl-1 (15, 18). The purpose of this study was to test whether Mcl-1 is a target of signal transduction by JNK. We demonstrate that a key function of JNK is to prime Mcl-1 for phosphorylation by GSK3. JNK is required for GSK3-mediated degradation of Mcl-1 in response to stress. Coordinated regulation of the stress-activated JNK pathway and the AKT-inhibited GSK3 pathway is therefore required for stress-induced Mcl-1 degradation.  相似文献   
519.
A variable fraction of fecal pellets produced in the epipelagic layer is intercepted and retained before reaching the bottom. We assessed fecal pellet retention in the ice-covered Beaufort Sea in early February by comparing the shape and size-frequency distribution of pellets collected by a sediment trap moored at 210 m to that produced in vitro. Appendicularian ellipsoidal and copepod cylindrical pellets made up 75 and 24% of the flux (165 μg C m−2 day−1). In contrast, production (135 μg C m−2 day−1) was dominated by cylindrical pellets (93%). The vertical flux of cylindrical pellets at 210 m was attenuated by 70%. Pellets >120 μm in width, represented 42% of the production, but were not detected in the trap. Retention most likely resulted from coprorhexic feeding by copepods such as Metridia longa. Our observations suggest that the detritivore food web prevailing under the ice of the Arctic Ocean in winter is dominated by appendicularians feeding on pellets fragmented by copepods.  相似文献   
520.
Obesity‐induced hyperleptinemia is frequently associated with insulin resistance suggesting a crosstalk between leptin and insulin signaling pathways. Our aim was to determine whether insulin and leptin together interfere on NOS activation in adipocytes. We examined insulin and leptin‐induced nitric oxide synthase (NOS) activity, protein amount and NOS III phosphorylation at Ser1179 in isolated epididymal adipocytes from rat, in the presence or not of inhibitors of kinases implicated in insulin or leptin signaling pathways. Insulin or leptin induced NOS III phosphorylation at Ser1179 leading to increased NO production in rat adipocytes, in agreement with our previous observations. When insulin and leptin at a concentration found in obese rats (10 ng/ml) were combined, NOS activity was not increased, suggesting a negative crosstalk between insulin and leptin signaling mechanisms. Chemical inhibitors of kinases implicated in signaling pathways of insulin, such as PI‐3 kinase, or of leptin, such as JAK‐2, did not prevent this negative interaction. When leptin signaling was blocked by PKA inhibitors, insulin‐induced NOS activity and NOS III phosphorylation at Ser1179 was observed. In the presence of leptin and insulin, (i) IRS‐1 was phosphorylated on Ser307 and this effect was prevented by PKA inhibitors, (ii) JAK‐2 was dephosphorylated, an effect prevented by SHP‐1 inhibitor. A mutual resistance occurs with leptin and insulin. Leptin phosphorylates IRS‐1 to induce insulin resistance while insulin dephosphorylates JAK‐2 to favor leptin resistance. This interference between insulin and leptin signaling could play a crucial role in insulin‐ and leptin‐resistance correlated with obesity. J. Cell. Biochem. 108: 982–988, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号