首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2026篇
  免费   190篇
  2021年   24篇
  2019年   23篇
  2018年   22篇
  2017年   19篇
  2016年   35篇
  2015年   53篇
  2014年   54篇
  2013年   77篇
  2012年   99篇
  2011年   83篇
  2010年   53篇
  2009年   58篇
  2008年   80篇
  2007年   79篇
  2006年   74篇
  2005年   83篇
  2004年   60篇
  2003年   79篇
  2002年   84篇
  2001年   70篇
  2000年   55篇
  1999年   44篇
  1998年   32篇
  1997年   29篇
  1996年   20篇
  1995年   21篇
  1994年   16篇
  1993年   21篇
  1992年   42篇
  1991年   33篇
  1990年   28篇
  1989年   16篇
  1988年   32篇
  1987年   35篇
  1986年   36篇
  1985年   35篇
  1984年   30篇
  1983年   37篇
  1982年   28篇
  1981年   32篇
  1980年   16篇
  1979年   16篇
  1978年   21篇
  1977年   21篇
  1976年   16篇
  1975年   21篇
  1974年   19篇
  1973年   16篇
  1972年   24篇
  1968年   18篇
排序方式: 共有2216条查询结果,搜索用时 15 毫秒
991.
992.
Wolbachia pipientis is a widespread intracellular bacterial symbiont of arthropods and is common in insects. One of their more exotic and unexpected hosts is the filarial nematodes, notable for the parasites responsible for onchocerciasis (river blindness), lymphatic filariasis (elephantiasis) and dirofilariasis (heartworm). Wolbachia are only present in a subgroup of the filarial nematodes and do not extend to other groups of nematodes either parasitic or free‐living. In the medically and veterinary important species that host Wolbachia, the symbiont has become an essential partner to key biological processes in the life of the nematode to the point where antibiotic elimination of the bacteria leads to a potent and effective anti‐filarial drug treatment. We review the cellular and molecular basis of Wolbachia filarial interactions and highlight the key processes provided by the endosymbiont upon which the nematodes have become entirely dependent. This dependency is primarily restricted to periods of the lifecycle with heavy metabolic demands including growth and development of larval stages and embryogenesis in the adult female. Also, the longevity of filarial parasites is compromised following depletion of the symbiont, which for the first time has delivered a safe and effective treatment to kill adult parasites with antibiotics.  相似文献   
993.
Sixty years after Watson and Crick published the double helix model of DNA''s structure, thirteen members of Genome Biology''s Editorial Board select key advances in the field of genome biology subsequent to that discovery.April 25th 2013 is the sixtieth anniversary of the infamous Watson and Crick Nature paper describing a model for the structure of DNA, published 25 April 1953: the now infamous ''double helix'' [1]. Two accompanying papers from Rosalind Franklin, Maurice Wilkins and colleagues leant experimental support to the proposed structure in the form of X-ray diffraction data [2,3], as described elsewhere in this issue of Genome Biology [4]. The model was a landmark discovery in the history of modern science, and was notable for its cross-disciplinary importance: the question addressed was of immense biological importance, but it was physicists and chemists whose expertise and techniques were needed in order to arrive at an answer. One of these physicists, Ray Gosling, describes the unveiling of Watson and Crick''s double helix structure as a ''eureka'' moment [4]: its simplicity and elegance were striking, and not only explained the X-ray diffraction data but also the mode of replication of life itself. It is rare for a scientific discovery to achieve such an iconic status, to pervade popular culture and the public consciousness, as well as to become an emblem of scientific inquiry - as exemplified by Genome Biology''s double helix-inspired logo. Although Avery had already shown DNA to be the genetic material [5], it took the convincing simplicity of Watson and Crick''s double helix for this notion to widely take hold, in place of theories favoring proteins. The discovery, therefore, had many important implications, and set the scene for future breakthroughs in the field of genome biology.To celebrate sixty years of such discoveries, we asked a jury composed of Genome Biology Editorial Board members to select key advances in the field since 25 April 1953. The brief was to choose a development that was either the most important or the most surprising, or that had the most personal impact, and to briefly summarize why. A number of selections focused on technological advances - from restriction mapping through microarrays and high-throughput sequencing. These technologies have clearly done much to inform our understanding of the biology of genomes. The most popular choice, however, was the discovery of introns. Much like the double helix, this discovery had something of the ''X factor'' to it: biologists trained in the post-intron era may take the concept of gene fragmentation for granted, but at the time it was a truly radical and paradigm-shifting idea. The sense of surprise made a strong impression on those old enough to remember the discovery, and one of the groups involved went so far as to describe it as ''amazing'' in the title of their paper [6].  相似文献   
994.
Recent empirical and theoretical advances inform us about multiple drivers of soil organic matter (SOM) decomposition and microbial responses to warming. Absent from our conceptual framework of how soil respiration will respond to warming are adequate links between microbial resource demands, kinetic theory, and substrate stoichiometry. Here, we describe two important concepts either insufficiently explored in current investigations of SOM responses to temperature, or not yet addressed. First, we describe the complete range of responses for how warming may change microbial resource demands, physiology, community structure, and total biomass. Second, we describe how any relationship between SOM activation energy of decay and carbon (C) and nitrogen (N) stoichiometry can alter the relative availability of C and N as temperature changes. Changing availabilities of C and N liberated from their organic precursors can feedback to microbial resource demands, which in turn influence the aggregated respiratory response to temperature we observe. An unsuspecting biogeochemist focused primarily on temperature sensitivity of substrate decay thus cannot make accurate projections of heterotrophic CO2 losses from diverse organic matter reservoirs in a warming world. We establish the linkages between enzyme kinetics, SOM characteristics, and potential for microbial adaptation critical for making such projections. By examining how changing microbial needs interact with inherent SOM structure and composition, and thus reactivity, we demonstrate the means by which increasing temperature could result in increasing, unchanging, or even decreasing respiration rates observed in soils. We use this exercise to highlight ideas for future research that will develop our abilities to predict SOM feedbacks to climate.  相似文献   
995.
The recent publication of the apo-, closed-state 3D crystal structure of zebrafish (zf) P2X4.1 has not only revolutionized the P2X research field, but also highlighted the need for further crystal structures, of receptors in different activation states, so that we can gain a complete molecular understanding of ion channel function. zfP2X4.1 was selected as a 3D-crystallization candidate because of its ability to form stable trimers in detergent solution, and purified from over-expression in baculovirus-infected Spodoptera frugiperda (Sf9) insect cells. In this work, we have used a similar approach to express both human P2X4 (hP2X4) and Dictyostelium discoideum P2XA (DdP2XA) in Sf9 cells. Although hP2X4 did not form stable trimers in detergent solution, both receptors bound to ATP-coupled resins, indicating that their extracellular domains were folded correctly. DdP2XA formed strong trimers in detergent solution, and we were able to selectively purify trimers using preparative electrophoresis, and build a 21?-resolution 3D structure using transmission electron microscopy and single particle analysis. Although the structure of DdP2XA possessed similar dimensions to those of the previously determined low-resolution hP2X4 structure and the zfP2X4.1 crystal structure, N-glycosylation mutagenesis and molecular modeling indicated differences between N-glycan usage and predicted accessibility in models of DdP2XA based on the zfP2X4.1 crystal structure. Our data demonstrate that DdP2XA expressed in insect cells retains ATP-binding capacity after detergent solubilization, is an ideal candidate for structural study, and possesses a significantly different 3D structure to that of both hP2X4 and zfP2X4.1.  相似文献   
996.
Group A Streptococcus (GAS) has a rich evolutionary history of horizontal transfer among its core genes. Yet, despite extensive genetic mixing, GAS strains have discrete ecological phenotypes. To further our understanding of the molecular basis for ecological phenotypes, comparative genomic hybridization of a set of 97 diverse strains to a GAS pangenome microarray was undertaken, and the association of accessory genes with emm genotypes that define tissue tropisms for infection was determined. Of the 22 nonprophage accessory gene regions (AGRs) identified, only 3 account for all statistically significant linkage disequilibrium among strains having the genotypic biomarkers for throat versus skin infection specialists. Networked evolution and population structure analyses of loci representing each of the AGRs reveal that most strains with the skin specialist and generalist biomarkers form discrete clusters, whereas strains with the throat specialist biomarker are highly diverse. To identify coinherited and coselected accessory genes, the strength of genetic associations was determined for all possible pairwise combinations of accessory genes among the 97 GAS strains. Accessory genes showing very strong associations provide the basis for an evolutionary model, which reveals that a major transition between many throat and skin specialist haplotypes correlates with the gain or loss of genes encoding fibronectin-binding proteins. This study employs a novel synthesis of tools to help delineate the major genetic changes associated with key adaptive shifts in an extensively recombined bacterial species.  相似文献   
997.
Radiation is used in the study of neurogenesis in the adult mouse both as a model for patients undergoing radiation therapy for CNS malignancies and as a tool to interrupt neurogenesis. We describe the use of a dedicated CT-guided precision device to irradiate specific sub-regions of the adult mouse brain. Improved CT visualization was accomplished with intrathecal injection of iodinated contrast agent, which enhances the lateral ventricles. T2-weighted MRI images were also used for target localization. Visualization of delivered beams (10 Gy) in tissue was accomplished with immunohistochemical staining for the protein γ-H2AX, a marker of DNA double-strand breaks. γ-H2AX stains showed that the lateral ventricle wall could be targeted with an accuracy of 0.19 mm (n = 10). In the hippocampus, γ-H2AX staining showed that the dentate gyrus can be irradiated unilaterally with a localized arc treatment. This resulted in a significant decrease of proliferative neural progenitor cells as measured by Ki-67 staining (P < 0.001) while leaving the contralateral side intact. Two months after localized irradiation, neurogenesis was significantly inhibited in the irradiated region as seen with EdU/NeuN double labeling (P < 0.001). Localized radiation in the rodent brain is a promising new tool for the study of neurogenesis.  相似文献   
998.
Using a recombinant, = 1 Satellite Tobacco Necrosis Virus (STNV)-like particle expressed in Escherichia coli, we have established conditions for in vitro disassembly and reassembly of the viral capsid. In vivo assembly is dependent on the presence of the coat protein (CP) N-terminal region, and in vitro assembly requires RNA. Using immobilised CP monomers under reassembly conditions with “free” CP subunits, we have prepared a range of partially assembled CP species for RNA aptamer selection. SELEX directed against the RNA-binding face of the STNV CP resulted in the isolation of several clones, one of which (B3) matches the STNV-1 genome in 16 out of 25 nucleotide positions, including across a statistically significant 10/10 stretch. This 10-base region folds into a stem-loop displaying the motif ACAA and has been shown to bind to STNV CP. Analysis of the other aptamer sequences reveals that the majority can be folded into stem-loops displaying versions of this motif. Using a sequence and secondary structure search motif to analyse the genomic sequence of STNV-1, we identified 30 stem-loops displaying the sequence motif AxxA. The implication is that there are many stem-loops in the genome carrying essential recognition features for binding STNV CP. Secondary structure predictions of the genomic RNA using Mfold showed that only 8 out of 30 of these stem-loops would be formed in the lowest-energy structure. These results are consistent with an assembly mechanism based on kinetically driven folding of the RNA.  相似文献   
999.
Two forms of Ruminococcus flavefaciens FD-1 endoglucanase B, a member of glycoside hydrolase family 44, one with only a catalytic domain and the other with a catalytic domain and a carbohydrate binding domain (CBM), were produced. Both forms hydrolyzed cellotetraose, cellopentaose, cellohexaose, carboxymethylcellulose (CMC), birchwood and larchwood xylan, xyloglucan, lichenan, and Avicel but not cellobiose, cellotriose, mannan, or pullulan. Addition of the CBM increased catalytic efficiencies on both CMC and birchwood xylan but not on xyloglucan, and it decreased rates of cellopentaose and cellohexaose hydrolysis. Catalytic efficiencies were much higher on xyloglucan than on other polysaccharides. Hydrolysis rates increased with increasing cellooligosaccharide chain length. Cellotetraose hydrolysis yielded only cellotriose and glucose. Hydrolysis of cellopentaose gave large amounts of cellotetraose and glucose, somewhat more of the former than of the latter, and much smaller amounts of cellobiose and cellotriose. Cellohexaose hydrolysis yielded much more cellotetraose than cellobiose and small amounts of glucose and cellotriose, along with a low and transient amount of cellopentaose.  相似文献   
1000.
Resistance to antibiotics is a problem not only in terms of healthcare but also biodefense. Engineering of resistance into a human pathogen could create an untreatable biothreat pathogen. One such pathogen is Yersinia pestis, the causative agent of plague. Previously, we have used a bioinformatic approach to identify proteins that may be suitable targets for antimicrobial therapy and in particular for the treatment of plague. The serine protease inhibitor ecotin was identified as one such target. We have carried out mutational analyses in the closely related Yersinia pseudotuberculosis, validating that the ecotin gene is a virulence-associated gene in this bacterium. Y. pestis ecotin inhibits chymotrypsin. Here, we present the structure of ecotin in complex with chymotrypsin to 2.74 Å resolution. The structure features a biologically relevant tetramer whereby an ecotin dimer binds to two chymotrypsin molecules, similar to what was observed in related serine protease inhibitor structures. However, the vast majority of the interactions in the present structure are distinctive, indicating that the broad specificity of the inhibitor for these proteases is based largely on its capacity to recognize features unique to each of them. These findings will have implications for the development of small ecotin inhibitors for therapeutic use.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号