首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1947篇
  免费   185篇
  2021年   23篇
  2019年   22篇
  2018年   22篇
  2017年   17篇
  2016年   29篇
  2015年   45篇
  2014年   49篇
  2013年   75篇
  2012年   92篇
  2011年   81篇
  2010年   47篇
  2009年   56篇
  2008年   74篇
  2007年   76篇
  2006年   71篇
  2005年   79篇
  2004年   57篇
  2003年   77篇
  2002年   82篇
  2001年   68篇
  2000年   54篇
  1999年   43篇
  1998年   30篇
  1997年   29篇
  1996年   18篇
  1995年   19篇
  1994年   16篇
  1993年   19篇
  1992年   41篇
  1991年   32篇
  1990年   28篇
  1989年   16篇
  1988年   32篇
  1987年   35篇
  1986年   35篇
  1985年   35篇
  1984年   30篇
  1983年   37篇
  1982年   27篇
  1981年   31篇
  1980年   16篇
  1979年   16篇
  1978年   21篇
  1977年   21篇
  1976年   16篇
  1975年   21篇
  1974年   19篇
  1973年   16篇
  1972年   24篇
  1968年   18篇
排序方式: 共有2132条查询结果,搜索用时 187 毫秒
71.
Bacterial chemotaxis, the directed movement of a cell population in response to a chemical gradient, plays a critical role in the distribution and dynamic interaction of bacterial populations in nonmixed systems. Therefore, in order to make reliable predictions about the migratory behavior of bacteria within the environment, a quantitative characterization of the chemotactic response in terms of intrinsic cell properties is needed.The design of the stopped-flow diffusion chamber (SFDC) provides a well-characterized chemical gradient and reliable method for measuring bacterial migration behavior. During flow through the chamber, a step change in chemical concentration is imposed on a uniform suspension of bacteria. Once flow is stopped, diffusion causes a transient chemical gradient to develop, and bacteria respond by forming a band of high cell density which travels toward higher concentrations of the attractant. Changes in bacterial spatial distributions observed through light scattering are recorded on photomicrographs during a 10-min period. Computer-aided image analysis converts absorbance of the photographic negatives to a digital representation of bacterial density profiles. A mathematical model (part II) is used to quantitatively characterize these observations in terms of intrinsic cell parameters: a chemotactic sensitivity coefficient, mu(0), from the aggregate cell density accumulated in the band and a random motility coefficient, mu, from population dispersion in the absence of a chemical gradient.Using the SFDC assay and an individual-cell-based mathematical model, we successfully determined values for both of these population parameters for Escherichia coli K12 responding to fucose. The values obtained were mu = 1.1 +/- 0. 4 x 10(-5) cm(2)/s and chi(o) = 8 +/- 3 +/- 10(-5) cm(2)/s. We have demonstrated a method capable of determining these parameter values from the now validated mathematical model which will be useful for predicting bacterial migration in application systems.  相似文献   
72.
Commercially available crystalline native and recombinant firefly luciferases were compared. The two types of luciferase had indistinguishable responses to variation in ATP and luciferin concentrations and to omission of reaction components. The time courses of light production, the responses to nucleotide analogues, and the stability of the enzymes under several storage conditions were identical. The native enzyme had a slightly greater specific activity and was more sensitive to trypsin degradation. These differeces are probably attributable to differences in conformation.  相似文献   
73.
Several cosmid clones from Streptomyces ambofaciens containing the spiramycin resistance gene srmB were introduced into S. fradiae PM73, a mutant defective in tylosin synthesis, resulting in tylosin synthesis. The DNA responsible for this complementation was localized to a 10.5-kilobase EcoRI fragment. A 32-kilobase DNA segment which included the srmB spiramycin resistance gene and DNA which complemented the defect in strain PM73 were mutagenized in vivo with Tn10 carrying the gene for Nmr (which is expressed in Streptomyces spp.) or in vitro by insertional mutagenesis with a drug resistance gene (Nmr) cassette. When these mutagenized DNA segments were crossed into the S. ambofaciens chromosome, three mutant classes blocked in spiramycin synthesis were obtained. One mutant accumulated two precursors of spiramycin, platenolide I and platenolide II. Two mutants, when cofermented with the platenolide-accumulating mutant, produced spiramycin. Tylactone supplementation of these two mutants resulted in the synthesis of a group of compounds exhibiting antibiotic activity. Two other mutants failed to coferment with any of the other mutants or to respond to tylactone supplementation.  相似文献   
74.
Elevations in the mass of ether-linked diglycerides (i.e. 1-O-alk-1'-enyl-2-acyl-sn-glycerol (AAG) and 1-O-alkyl-2-acyl-sn-glycerol (Alkyl AG)) during cellular activation are prolonged in comparison to their 1,2-diacyl-sn-glycerol (DAG) counterparts. Since the metabolic removal of DAG is determined, in large part, by the rate of its phosphorylation by diglyceride kinase, we quantified differences in the activity of diglyceride kinase utilizing individual subclasses of diradyl glycerols as substrate. Rabbit brain microsomal diglyceride kinase activity was over 30-fold greater utilizing DAG as substrate (25.8 nmol.mg-1.min-1) in comparison to AAG (0.8 nmol.mg-1.min-1). No alterations in the affinity of microsomal diglyceride kinase for ATP were present (Km approximately 0.5 mM) utilizing each diradyl glycerol subclass. Similar subclass specificities for diglyceride kinase (i.e. DAG greater than Alkyl AG much greater than AAG) were present in brain and liver cytosol as well as in liver microsomes utilizing multiple assay conditions. In sharp contrast, Escherichia coli diglyceride kinase phosphorylated DAG, Alkyl AG, or AAG diradyl glycerol molecular subclasses at identical rates. Furthermore, although DAG was rapidly hydrolyzed by diglyceride lipase, catabolism of AAG or Alkyl AG by plasmalogenase, alkyl ether hydrolase, or diglyceride/monoglyceride lipase was undetectable. Collectively, these results demonstrate the importance of the differential catabolism of each diradyl glycerol molecular subclass as a primary determinant of their biologic half-lives. Since individual subclasses of diglycerides have distinct physical properties and physiologic functions, these results underscore the importance of lipid subclass specific metabolism in tailoring individual cellular responses during activation.  相似文献   
75.
Beta-galactosidase served as a model system to explore the feasibility of enhancing the selectivity of a low-cost, easily scaled separation method-precipitation. Enhanced selectivity was sought by fusing the enzyme with polypeptide tails including 5 and 11 aspartates. The unfused protein could not be selectively removed from the Escherichia coli cell extract by precipitation with polyethylenimine (PEI), but the longest fusion could be selectively removed. The presence of nucleic acids limited the purification attainable. Pretreatment with nuclease followed by diafiltration resulted in an extract from which the same fusion could be precipitated with greater than fivefold enrichment, while the untailed enzyme remained unenriched by the same precipitation step. Selectivity is attributed to the binding strength of the polyanionic tails to the polycationic PEI.  相似文献   
76.
Commonly, subcellular organelles such as nuclei, mitochondria, lysosomes, and Golgi membranes are isolated first by differential centrifugation in low-speed or high-speed centrifuges and then purified by gradient centrifugation in ultracentrifuges. We have prepared these organelles using a new high-speed centrifuge (28,000 rpm max) which allows the generation of higher radial centrifugal forces (rcfs) than are available in standard machines. We have shown that most subcellular organelles can be purified by using low-viscosity Nycodenz gradients at rcfs lower than those normally used in ultracentrifuges, without increasing the time of centrifugation. Use of Nycodenz also allows rapid harvesting of material from gradients and we have adapted a number of enzyme assays to facilitate gradient analysis.  相似文献   
77.
Histamine activation of adenylyl cyclase activity in sonicated enriched rat gastric parietal cells showed a time, temperature, and concentration dependence upon guanine diphosphoimide (Gpp(NH)p). Enzyme activation was first order with Gpp(NH)p alone or Gpp(NH)p plus histamine. The Ka for Gpp(NH)p was ~2 μm and was not influenced by histamine. GTP and GDP were inactive alone or with histamine and were competitive with Gpp(NH)p, showing apparent Ki's of near 0.4 and 0.3 μm, respectively. In the presence of Gpp(NH)p, parietal cell adenylyl cyclase was activated by histamine with an EC50 of 24 μm, the most potent in a series of histamine analogs, further substantiating an H2-receptor classification for this response. H2-Receptor antagonists were competitive inhibitors with submicromolar Ki's. Preincubation of parietal cells with histamine and Gpp(NH)p resulted in adenylyl cyclase activity up to 15 times the basal level. The activated state was retained after washing the cells free of histamine and Gpp(NH)p and was not reversed by the subsequent addition of either histamine, cimetidine, or GTP. The other gastric acid secretagogues, pentagastrin and carbamylcholine, were without effect upon histamine activation or the activated state of adenylyl cyclase. These results describe a level of control of histamine-sensitive adenylyl cyclase that requires consideration in the activation of the parietal cell H2-receptor system by histamine to modulate acid secretion.  相似文献   
78.
Summary We have developed a procedure for the isolation of Chlamydomonas reinhardtii mutants defective in light-dependent protochlorophyllide reduction (photoconversion), a key step in the biosynthesis of chlorophyll. Mutants were isolated by mutagenizing y-1-4, a temperature-sensitive yellow mutant blocked in the alternative light-independent protochlorophyllide reduction pathway, and screening for colonies which failed to green in the light at the restrictive temperature. Seven mutants were isolated which fail to photoconvert protochlorophyllide in photoconversion tests. All seven mutants have a single mutation at the pc-1 locus responsible for the defect in photoconversion. pc-1 maps close to y-5 on nuclear linkage group I. The pc-1 mutation is not itself temperature-sensitive because it blocks photoconversion at the permissive temperature when combined with the non-conditional yellow mutations y-5 and y-7. Cells containing the pc-1 mutation alone synthesize about 52% and 36% of the wildtype chlorophyll level in the dark and light, respectively, demonstrating that the light-independent protochlorophyllide reduction pathway in C. reinhardtii operates in the light.  相似文献   
79.
80.
A mathematical model of the fluorescence decay experiment based on linear systems theory is presented. The model suggests an experimental technique that increases the probability of correctly determining the decay constants of a multicomponent system. The use of moment methods for data analysis improves accuracy by combining information obtained from several discrete experiments. Examples are presented to show that the analysis of a three component system composed of known standards is improved as the number of experimental determinations is increased from one to four. The discrete measurements are made by changing the excitation and emission wavelengths.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号