首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   304篇
  免费   32篇
  2023年   1篇
  2022年   6篇
  2021年   10篇
  2020年   9篇
  2019年   6篇
  2018年   9篇
  2017年   9篇
  2016年   13篇
  2015年   22篇
  2014年   14篇
  2013年   14篇
  2012年   19篇
  2011年   25篇
  2010年   13篇
  2009年   10篇
  2008年   17篇
  2007年   21篇
  2006年   17篇
  2005年   19篇
  2004年   9篇
  2003年   11篇
  2002年   10篇
  2001年   2篇
  2000年   7篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1993年   1篇
  1992年   1篇
  1991年   3篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   3篇
  1986年   3篇
  1985年   4篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1981年   3篇
  1980年   3篇
  1979年   5篇
  1978年   2篇
  1976年   3篇
  1974年   1篇
排序方式: 共有336条查询结果,搜索用时 15 毫秒
171.
172.
Although cross generation (CGP) and multigenerational (MGP) plasticity have been identified as mechanisms of acclimation to global change, the weight of evidence indicates that parental conditioning over generations is not a panacea to rescue stress sensitivity in offspring. For many species, there were no benefits of parental conditioning. Even when improved performance was observed, this waned over time within a generation or across generations and fitness declined. CGP and MGP studies identified resilient species with stress tolerant genotypes in wild populations and selected family lines. Several bivalves possess favourable stress tolerance and phenotypically plastic traits potentially associated with genetic adaptation to life in habitats where they routinely experience temperature and/or acidification stress. These traits will be important to help ‘climate proof’ shellfish ventures. Species that are naturally stress tolerant and those that naturally experience a broad range of environmental conditions are good candidates to provide insights into the physiological and molecular mechanisms involved in CGP and MGP. It is challenging to conduct ecologically relevant global change experiments over the long times commensurate with the pace of changing climate. As a result, many studies present stressors in a shock‐type exposure at rates much faster than projected scenarios. With more gradual stressor introduction over longer experimental durations and in context with conditions species are currently acclimatized and/or adapted to, the outcomes for sensitive species might differ. We highlight the importance to understand primordial germ cell development and the timing of gametogenesis with respect to stressor exposure. Although multigenerational exposure to global change stressors currently appears limited as a universal tool to rescue species in the face of changing climate, natural proxies of future conditions (upwelling zones, CO2 vents, naturally warm habitats) show that phenotypic adjustment and/or beneficial genetic selection is possible for some species, indicating complex plasticity–adaptation interactions.  相似文献   
173.
Auxin influences strigolactones in pea mycorrhizal symbiosis   总被引:2,自引:0,他引:2  
Hormone interactions are essential for the control of many developmental processes, including intracellular symbioses. The interaction between auxin and the new plant hormone strigolactone in the regulation of arbuscular mycorrhizal symbiosis was examined in one of the few auxin deficient mutants available in a mycorrhizal species, the auxin-deficient bsh mutant of pea (Pisum sativum). Mycorrhizal colonisation with the fungus Glomus intraradices was significantly reduced in the low auxin bsh mutant. The bsh mutant also exhibited a reduction in strigolactone exudation and the expression of a key strigolactone biosynthesis gene (PsCCD8). Strigolactone exudation was also reduced in wild type plants when the auxin content was reduced by stem girdling. Low strigolactone levels appear to be at least partially responsible for the reduced colonisation of the bsh mutant, as application of the synthetic strigolactone GR24 could partially rescue the mycorrhizal phenotype of bsh mutants. Data presented here indicates root auxin content was correlated with strigolactone exudation in both mutant and wild type plants. Mutant studies suggest that auxin may regulate early events in the formation of arbuscular mycorrhizal symbiosis by controlling strigolactone levels, both in the rhizosphere and possibly during early root colonisation.  相似文献   
174.
Strigolactones are an ancient group of plant signalling molecules. They play a critical role in the rhizosphere where they facilitate the formation of symbioses with fungi, crucial for the acquisition of plant nutrients in over 80 % of land plant species. Strigolactones have also been exploited by parasitic weeds as a rhizosphere signal indicating the presence of a host species, resulting in devastating losses in some agricultural systems. Recently, they have also been shown to act endogenously as plant hormones controlling shoot branching and have been implicated in a wide range of other physiological processes, including root growth, root-hair elongation, adventitious rooting, secondary growth, photomorphogenesis, seed germination, nodulation, and protonemal development in mosses. Here, we discuss the evidence for the involvement of strigolactones as endogenous regulators of these processes and highlight some examples where the evidence is inconclusive. One major gap in our understanding is the identity of the endogenous strigolactone(s) that are biologically active. A discussion of the interactions between the different plant hormones and the possible role of strigolactones as integrators of the root-to-shoot balance, nutrient acquisition, and thus resource allocation illustrates some important future directions for this area of research.  相似文献   
175.
Strigolactones promote nodulation in pea   总被引:2,自引:0,他引:2  
Foo E  Davies NW 《Planta》2011,234(5):1073-1081
Strigolactones are recently defined plant hormones with roles in mycorrhizal symbiosis and shoot and root architecture. Their potential role in controlling nodulation, the related symbiosis between legumes and Rhizobium bacteria, was explored using the strigolactone-deficient rms1 mutant in pea (Pisum sativum L.). This work indicates that endogenous strigolactones are positive regulators of nodulation in pea, required for optimal nodule number but not for nodule formation per se. rms1 mutant root exudates and root tissue are almost completely deficient in strigolactones, and rms1 mutant plants have approximately 40% fewer nodules than wild-type plants. Treatment with the synthetic strigolactone GR24 elevated nodule number in wild-type pea plants and also elevated nodule number in rms1 mutant plants to a level similar to that seen in untreated wild-type plants. Grafting studies revealed that nodule number and strigolactone levels in root tissue of rms1 roots were unaffected by grafting to wild-type scions indicating that strigolactones in the root, but not shoot-derived factors, regulate nodule number and provide the first direct evidence that the shoot does not make a major contribution to root strigolactone levels.  相似文献   
176.
IL-33 administration is associated with facilitation of Th2 responses and cardioprotective properties in rodent models. However, in heart transplantation, the mechanism by which IL-33, signaling through ST2L (the membrane-bound form of ST2), promotes transplant survival is unclear. We report that IL-33 administration, while facilitating Th2 responses, also increases immunoregulatory myeloid cells and CD4(+) Foxp3(+) regulatory T cells (Tregs) in mice. IL-33 expands functional myeloid-derived suppressor cells, CD11b(+) cells that exhibit intermediate (int) levels of Gr-1 and potent T cell suppressive function. Furthermore, IL-33 administration causes an St2-dependent expansion of suppressive CD4(+) Foxp3(+) Tregs, including an ST2L(+) population. IL-33 monotherapy after fully allogeneic mouse heart transplantation resulted in significant graft prolongation associated with increased Th2-type responses and decreased systemic CD8(+) IFN-γ(+) cells. Also, despite reducing overall CD3(+) cell infiltration of the graft, IL-33 administration markedly increased intragraft Foxp3(+) cells. Whereas control graft recipients displayed increases in systemic CD11b(+) Gr-1(hi) cells, IL-33-treated recipients exhibited increased CD11b(+) Gr-1(int) cells. Enhanced ST2 expression was observed in the myocardium and endothelium of rejecting allografts, however the therapeutic effect of IL-33 required recipient St2 expression and was dependent on Tregs. These findings reveal a new immunoregulatory property of IL-33. Specifically, in addition to supporting Th2 responses, IL-33 facilitates regulatory cells, particularly functional CD4(+) Foxp3(+) Tregs that underlie IL-33-mediated cardiac allograft survival.  相似文献   
177.
IL-33 activates B1 cells and exacerbates contact sensitivity   总被引:1,自引:0,他引:1  
B1 B cells produce natural IgM and play a critical role in the early defense against bacterial and viral infection. The polyreactive IgM also contributes to the clearance of apoptotic products and plays an important role in autoimmune pathogenesis. However, the mechanism of activation and proliferation of B1 cells remains obscure. In this study, we report that IL-33, a new member of IL-1 family, activates B1 cells, which express the IL-33 receptor α, ST2. IL-33 markedly activated B1 cell proliferation and enhanced IgM, IL-5, and IL-13 production in vitro and in vivo in a ST2-dependent manner. The IL-33-activated B1 cell functions could be largely abolished by IL-5 neutralization and partially reduced by T cell or mast cell deficiency in vivo. ST2-deficient mice developed less severe oxazolone-induced contact sensitivity (CS) than did wild-type (WT) mice. Furthermore, IL-33 treatment significantly exacerbated CS in WT mice with enhanced B1 cell proliferation and IgM and IL-5 production. Moreover, IL-33-activated B1 cells from WT mice could adoptively transfer enhanced CS in ST2(-/-) mice challenged with IL-33. Thus, we demonstrate, to the best of our knowledge, a hitherto unrecognized mechanism of B1 cell activation and IL-33 function, and suggest that IL-33 may play an important role in delayed-type hypersensitivity.  相似文献   
178.
179.
Background information. Vaccinia virus (VACV) was used as a surrogate of variola virus (genus Orthopoxvirus), the causative agent of smallpox, to study orthopoxvirus infection. VACV infects cells via attachment and fusion of the viral membrane with the host cell membrane. Glycosphingolipids, expressed in multiple organs, are major components of lipid rafts and have been associated with the infectious route of several pathogens. Results. We demonstrate that the VACV‐WR (VACV Western‐Reserve strain) displays no binding to Cer (ceramide) or to Gal‐Cer (galactosylceramide), but binds to a natural sulfated derivative of these molecules: the Sulf (sulfatide) 3′ sulfogalactosylceramide. The interaction between Sulf and VACV‐WR resulted in a time‐dependent inhibition of virus infection. Virus cell attachment was the crucial step inhibited by Sulf. Electron microscopy showed that SUVs (small unilamellar vesicles) enriched in Sulf bound to VACV particles. Both the A27 and L5 viral membrane proteins were shown to interact with Sulf, indicating that they could be the major viral ligands for Sulf. Soluble Sulf was successful in preventing mortality, but not morbidity, in a lethal mouse model infection with VACV‐WR. Conclusions. Together the results suggest that Sulf could play a role as an alternate receptor for VACV‐WR and probably other Orthopoxviruses.  相似文献   
180.
The diagnosis of childhood neurological disorders remains challenging given the overlapping clinical presentation across subgroups and heterogeneous presentation within subgroups. To determine the underlying genetic cause of a severe neurological disorder in a large consanguineous Pakistani family presenting with severe scoliosis, anarthria and progressive neuromuscular degeneration, we performed genome-wide homozygosity mapping accompanied by whole-exome sequencing in two affected first cousins and their unaffected parents to find the causative mutation. We identified a novel homozygous splice-site mutation (c.3512+1G>A) in the ALS2 gene (NM_020919.3) encoding alsin that segregated with the disease in this family. Homozygous loss-of-function mutations in ALS2 are known to cause juvenile-onset amyotrophic lateral sclerosis (ALS), one of the many neurological conditions having overlapping symptoms with many neurological phenotypes. RT-PCR validation revealed that the mutation resulted in exon-skipping as well as the use of an alternative donor splice, both of which are predicted to cause loss-of-function of the resulting proteins. By examining 216 known neurological disease genes in our exome sequencing data, we also identified 9 other rare nonsynonymous mutations in these genes, some of which lie in highly conserved regions. Sequencing of a single proband might have led to mis-identification of some of these as the causative variant. Our findings established a firm diagnosis of juvenile ALS in this family, thus demonstrating the use of whole exome sequencing combined with linkage analysis in families as a powerful tool for establishing a quick and precise genetic diagnosis of complex neurological phenotypes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号