首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1137篇
  免费   132篇
  2024年   1篇
  2023年   8篇
  2022年   21篇
  2021年   36篇
  2020年   27篇
  2019年   30篇
  2018年   25篇
  2017年   40篇
  2016年   49篇
  2015年   65篇
  2014年   68篇
  2013年   101篇
  2012年   110篇
  2011年   96篇
  2010年   54篇
  2009年   47篇
  2008年   82篇
  2007年   58篇
  2006年   64篇
  2005年   51篇
  2004年   60篇
  2003年   44篇
  2002年   59篇
  2001年   4篇
  2000年   4篇
  1999年   11篇
  1998年   9篇
  1997年   7篇
  1996年   5篇
  1995年   2篇
  1993年   3篇
  1992年   3篇
  1991年   2篇
  1990年   2篇
  1989年   2篇
  1988年   3篇
  1986年   3篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1977年   1篇
  1976年   1篇
  1975年   2篇
  1973年   1篇
  1969年   1篇
排序方式: 共有1269条查询结果,搜索用时 218 毫秒
31.
The knowledge that many pathogens rely on cell-to-cell communication mechanisms known as quorum sensing, opens a new disease control strategy: quorum quenching. Here we report on one of the rare examples where Gram-positive bacteria, the ‘Staphylococcus intermedius group’ of zoonotic pathogens, excrete two compounds in millimolar concentrations that suppress the quorum sensing signaling and inhibit the growth of a broad spectrum of Gram-negative beta- and gamma-proteobacteria. These compounds were isolated from Staphylococcus delphini. They represent a new class of quorum quenchers with the chemical formula N-[2-(1H-indol-3-yl)ethyl]-urea and N-(2-phenethyl)-urea, which we named yayurea A and B, respectively. In vitro studies with the N-acyl homoserine lactone (AHL) responding receptor LuxN of V. harveyi indicated that both compounds caused opposite effects on phosphorylation to those caused by AHL. This explains the quorum quenching activity. Staphylococcal strains producing yayurea A and B clearly benefit from an increased competitiveness in a mixed community.  相似文献   
32.
Influenza A NS1 and NS2 proteins are encoded by the RNA segment 8 of the viral genome. NS1 is a multifunctional protein and a virulence factor while NS2 is involved in nuclear export of viral ribonucleoprotein complexes. A yeast two-hybrid screening strategy was used to identify host factors supporting NS1 and NS2 functions. More than 560 interactions between 79 cellular proteins and NS1 and NS2 proteins from 9 different influenza virus strains have been identified. These interacting proteins are potentially involved in each step of the infectious process and their contribution to viral replication was tested by RNA interference. Validation of the relevance of these host cell proteins for the viral replication cycle revealed that 7 of the 79 NS1 and/or NS2-interacting proteins positively or negatively controlled virus replication. One of the main factors targeted by NS1 of all virus strains was double-stranded RNA binding domain protein family. In particular, adenosine deaminase acting on RNA 1 (ADAR1) appeared as a pro-viral host factor whose expression is necessary for optimal viral protein synthesis and replication. Surprisingly, ADAR1 also appeared as a pro-viral host factor for dengue virus replication and directly interacted with the viral NS3 protein. ADAR1 editing activity was enhanced by both viruses through dengue virus NS3 and influenza virus NS1 proteins, suggesting a similar virus-host co-evolution.  相似文献   
33.
34.
Two types of binding sites for hexokinase, designated as Type A or Type B sites, have been shown to coexist on brain mitochondria. The ratio of these sites varies between species.HK1 attaches by reversibly binding to the voltage dependent anion channel (VDAC). Regarding the nature of hexokinase binding sites, we investigated if it was linked to distinct VDAC interactomes. We approached this question by 2D BN/SDS-PAGE of mitochondria, followed by mass spectrometry.Our results are consistent with the possibility that the ratio of Type A/Type B sites is due to differential VDAC interactions in bovine and rat neuronal cells.  相似文献   
35.
Myeloid cells express the TNF family ligands BAFF/BLyS and APRIL, which exert their effects on B cells at different stages of differentiation via the receptors BAFFR, TACI (Transmembrane Activator and CAML-Interactor) and/or BCMA (B Cell Maturation Antigen). BAFF and APRIL are proteins expressed at the cell membrane, with both extracellular and intracellular domains. Therefore, receptor/ligand engagement may also result in signals in ligand-expressing cells via so-called “reverse signalling”. In order to understand how TACI-Fc (atacicept) technically may mediate immune stimulation instead of suppression, we investigated its potential to activate reverse signalling through BAFF and APRIL. BAFFR-Fc and TACI-Fc, but not Fn14-Fc, reproducibly stimulated the ERK and other signalling pathways in bone marrow-derived mouse macrophages. However, these effects were independent of BAFF or APRIL since the same activation profile was observed with BAFF- or APRIL-deficient cells. Instead, cell activation correlated with the presence of high molecular mass forms of BAFFR-Fc and TACI-Fc and was strongly impaired in macrophages deficient for Fc receptor gamma chain. Moreover, a TACI-Fc defective for Fc receptor binding elicited no detectable signal. Although these results do not formally rule out the existence of BAFF or APRIL reverse signalling (via pathways not tested in this study), they provide no evidence in support of reverse signalling and point to the importance of using appropriate specificity controls when working with Fc receptor-expressing myeloid cells.  相似文献   
36.
The giant bathymodioline mussels from vents have been studied as models to understand the adaptation of organisms to deep-sea chemosynthetic environments. These mussels are closely related to minute mussels associated to organic remains decaying on the deep-sea floor. Whereas biological data accumulate for the giant mussels, the small mussels remain poorly studied. Despite this lack of data for species living on organic remains it has been hypothesized that during evolution, contrary to their relatives from vents or seeps, they did not acquire highly specialized biological features. We aim at testing this hypothesis by providing new biological data for species associated with organic falls. Within Bathymodiolinae a close phylogenetic relationship was revealed between the Bathymodiolus sensu stricto lineage (i.e. “thermophilus” lineage) which includes exclusively vent and seep species, and a diversified lineage of small mussels, attributed to the genus Idas, that includes mostly species from organic falls. We selected Idas iwaotakii (Habe, 1958) from this latter lineage to analyse population structure and to document biological features. Mitochondrial and nuclear markers reveal a north-south genetic structure at an oceanic scale in the Western Pacific but no structure was revealed at a regional scale or as correlated with the kind of substrate or depth. The morphology of larval shells suggests substantial dispersal abilities. Nutritional features were assessed by examining bacterial diversity coupled by a microscopic analysis of the digestive tract. Molecular data demonstrated the presence of sulphur-oxidizing bacteria resembling those identified in other Bathymodiolinae. In contrast with most Bathymodiolus s.s. species the digestive tract of I. iwaotakii is not reduced. Combining data from literature with the present data shows that most of the important biological features are shared between Bathymodiolus s.s. species and its sister-lineage. However Bathymodiolus s.s. species are ecologically more restricted and also display a lower species richness than Idas species.  相似文献   
37.
38.
Preface     
  相似文献   
39.
This article documents the addition of 83 microsatellite marker loci and 96 pairs of single‐nucleotide polymorphism (SNP) sequencing primers to the Molecular Ecology Resources Database. Loci were developed for the following species: Bembidion lampros, Inimicus japonicus, Lymnaea stagnalis, Panopea abbreviata, Pentadesma butyracea, Sycoscapter hirticola and Thanatephorus cucumeris (anamorph: Rhizoctonia solani). These loci were cross‐tested on the following species: Pentadesma grandifolia and Pentadesma reyndersii. This article also documents the addition of 96 sequencing primer pairs and 88 allele‐specific primers or probes for Plutella xylostella.  相似文献   
40.
The Type VI secretion system (T6SS) is a macromolecular complex widespread in Gram-negative bacteria. Although several T6SS are required for virulence towards host models, most are necessary to eliminate competitor bacteria. Other functions, such as resistance to amoeba predation, biofilm formation or adaptation to environmental conditions have also been reported. This multitude of functions is reflected by the large repertoire of regulatory mechanisms shown to control T6SS expression, production or activation. Here, we demonstrate that one T6SS gene cluster encoded within the Yersinia pseudotuberculosis genome, T6SS-4, is regulated by OmpR, the response regulator of the two-component system EnvZ-OmpR. We first identified OmpR in a transposon mutagenesis screen. OmpR does not control the expression of the four other Y. pseudotuberculosis T6SS gene clusters and of an isolated vgrG gene, and responds to osmotic stresses to bind to and activate the T6SS-4 promoter. Finally, we show that T6SS-4 promotes Y. pseudotuberculosis survival in high osmolarity conditions and resistance to deoxycholate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号