首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32篇
  免费   4篇
  36篇
  2023年   1篇
  2022年   1篇
  2021年   3篇
  2019年   1篇
  2017年   1篇
  2015年   1篇
  2014年   3篇
  2012年   2篇
  2011年   3篇
  2010年   1篇
  2009年   1篇
  2007年   2篇
  2006年   1篇
  2005年   2篇
  1999年   1篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1991年   1篇
  1980年   1篇
  1979年   1篇
  1978年   2篇
  1976年   1篇
  1974年   1篇
  1973年   1篇
  1965年   1篇
排序方式: 共有36条查询结果,搜索用时 15 毫秒
11.
Cancer cachexia is a wasting syndrome characterised by the loss of fat and/or muscle mass in advanced cancer patients. It has been well-established that cancer cells themselves can induce cachexia via the release of several pro-cachectic and pro-inflammatory factors. However, it is unclear how this process is regulated and the key cachexins that are involved. In this study, we validated C26 and EL4 as cachexic and non-cachexic cell models, respectively. Treatment of adipocytes and myotubes with C26 conditioned medium induced lipolysis and atrophy, respectively. We profiled soluble secreted proteins (secretome) as well as small extracellular vesicles (sEVs) released from cachexia-inducing (C26) and non-inducing (EL4) cancer cells by label-free quantitative proteomics. A total of 1268 and 1022 proteins were identified in the secretome of C26 and EL4, respectively. Furthermore, proteomic analysis of sEVs derived from C26 and EL4 cancer cells revealed a distinct difference in the protein cargo. Functional enrichment analysis using FunRich highlighted the enrichment of proteins that are implicated in biological processes such as muscle atrophy, lipolysis, and inflammation in both the secretome and sEVs derived from C26 cancer cells. Overall, our characterisation of the proteomic profiles of the secretory factors and sEVs from cachexia-inducing and non-inducing cancer cells provides insights into tumour factors that promote weight loss by mediating protein and lipid loss in various organs and tissues. Further investigation of these proteins may assist in highlighting potential therapeutic targets and biomarkers of cancer cachexia.  相似文献   
12.
Ultraconserved elements (UCEs) are strongly depleted from segmental duplications and copy number variations (CNVs) in the human genome, suggesting that deletion or duplication of a UCE can be deleterious to the mammalian cell. Here we address the process by which CNVs become depleted of UCEs. We begin by showing that depletion for UCEs characterizes the most recent large-scale human CNV datasets and then find that even newly formed de novo CNVs, which have passed through meiosis at most once, are significantly depleted for UCEs. In striking contrast, CNVs arising specifically in cancer cells are, as a rule, not depleted for UCEs and can even become significantly enriched. This observation raises the possibility that CNVs that arise somatically and are relatively newly formed are less likely to have established a CNV profile that is depleted for UCEs. Alternatively, lack of depletion for UCEs from cancer CNVs may reflect the diseased state. In support of this latter explanation, somatic CNVs that are not associated with disease are depleted for UCEs. Finally, we show that it is possible to observe the CNVs of induced pluripotent stem (iPS) cells become depleted of UCEs over time, suggesting that depletion may be established through selection against UCE-disrupting CNVs without the requirement for meiotic divisions.  相似文献   
13.
Finding a positive association between paternal age and the incidence of aneuploidy is not difficult. A cursory analysis however reveals that any association is indirect, brought about by a close correlation between paternal age and maternal age. Approaches for dissecting out the confounding age effects of the mother has led to a lively exchange among epidemiologists, with perhaps a consensus for the absence of a paternal age effect, at least for trisomy 21. Molecular studies revealed the relatively minor contribution of paternal errors to trisomy, but even research on the paternally derived trisomies alone has been inconclusive; thus studies focussed directly on the sperm heads. Human-hamster fusion assays were superseded by FISH for establishing any possible link between age and the proportion of disomic sperm in an ejaculate. Despite innumerable microscope hours however, although convincing studies suggesting an age effect for disomies 1, 9, 18 and 21 and the sex chromosomes are in the literature, others failed to notice any association for these or other chromosomes. It is biologically plausible that chromosomal non-disjunction errors should increase with age. Male reproductive hormone production, testicular morphology and semen parameters all decline slowly with age and paternal age is implicated in congenital birth defects, such as achondroplasia and Apert syndromes and also linked to compromised DNA repair mechanisms. Despite several decades of epidemiological and molecular cytogenetic studies, however, we are still not close to a definitive answer of whether or not there is a paternal age effect for aneuploidy. In this review we conclude by questioning the efficacy of FISH because of difficulties in detecting nullisomy and because of evidence that the centromeres (from which most sperm-FISH probes are derived) cluster at the nuclear centre. Array-based approaches may well supersede FISH in addressing the question of a paternal age effect; for now, however, the jury is still out.  相似文献   
14.
hUCB‐MSC (human umbilical cord blood‐derived mesenchymal stem cells) offer an attractive alternative to bone marrow‐derived MSC for cell‐based therapy by being less invasive a source of biological material. We have evaluated the effect of hUCB‐MSC on the proliferation of K562 (an erythromyeloblastoid cell line) and the cytokine secretion pattern of hUCB‐MSC. Co‐culturing of hUCB‐MSC and K562 resulted in inhibition of proliferation of K562 in a dose‐dependent manner. However, the anti‐proliferative effect was reduced in transwells, suggesting the importance of direct cell‐to‐cell contact. hUCB‐MSC inhibited proliferation of K562, arresting them in the G0/G1 phase. NO (nitric oxide) was not involved in the hUCB‐MSC‐mediated tumour suppression. The presence of IL‐6 (interleukin 6) and IL‐8 were obvious in the hUCB‐MSC conditioned media, but no significant increase was found in 29 other cytokines. Th1 cytokines, IFNα (interferon α), Th2 cytokine IL‐4 and Th17 cytokine, IL‐17 were not secreted by hUCB‐MSC. There was an increase in the number of hUCB‐MSC expressing the latent membrane‐bound form of TGFβ1 co‐cultured with K562. The anti‐proliferative effect of hUCB‐MSC was due to arrest of the growth of K562 in the G0/G1 phase. The mechanisms underlying increased IL‐6 and IL‐8 secretion and LAP (latency‐associated peptide; TGFβ1) by hUCB‐MSC remains unknown.  相似文献   
15.
zeta-Crystallin is a novel nicotinamide adenine dinucleotide phosphate:quinone reductase, present at enzymatic levels in various tissues of different species, which is highly expressed in the lens of some hystricomorph rodents and camelids. We report here the complementary DNA (cDNA) cloning of zeta-crystallin from liver libraries in guinea pig (Cavia porcellus), where zeta-crystallin is highly expressed in the lens, and in the laboratory mouse (Mus musculus), where expression in the lens occurs only at enzymatic levels. A 5' untranslated sequence different from the one previously reported for the guinea pig lens cDNA was found in these clones. We also report the isolation of genomic clones including the complete guinea pig zeta-crystallin gene and the 5' region of this gene in mouse. These results show the presence of two promoters in the guinea pig zeta-crystallin gene, one responsible for expression at enzymatic levels and the other responsible for the high expression in the lens. The guinea pig lens promoter is not present in the mouse gene. This is the first example in which the recruitment of an enzyme as a lens crystallin can be explained by the acquisition of an alternative lens- specific promoter.   相似文献   
16.
BackgroundMelioidosis is a potentially fatal infectious disease caused by Burkholderia pseudomallei and the disease is endemic in Southeast Asia and Northern Australia. It has been confirmed as endemic in Sri Lanka. Genomic epidemiology of B. pseudomallei in Sri Lanka is largely unexplored. This study aims to determine the biogeography and genetic diversity of clinical isolates of B. pseudomallei and the phylogenetic and evolutionary relationship of Sri Lankan sequence types (STs) to those found in other endemic regions of Southeast Asia and Oceania.MethodsThe distribution of variably present genetic markers [Burkholderia intracellular motility A (bimA) gene variants bimABP/bimABM, filamentous hemagglutinin 3 (fhaB3), Yersinia-like fimbrial (YLF) and B. thailandensis-like flagellum and chemotaxis (BTFC) gene clusters and lipopolysaccharide O-antigen type A (LPS type A)] was examined among 310 strains. Multilocus sequence typing (MLST) was done for 84 clinical isolates. The phylogenetic and evolutionary relationship of Sri Lankan STs within Sri Lanka and in relation to those found in other endemic regions of Southeast Asia and Oceania were studied using e BURST, PHYLOViZ and minimum evolutionary analysis.ResultsThe Sri Lankan B. pseudomallei population contained a large proportion of the rare BTFC clade (14.5%) and bimABM allele variant (18.5%) with differential geographic distribution. Genotypes fhaB3 and LPSA were found in 80% and 86% respectively. This study reported 43 STs (including 22 novel). e-BURST analysis which include all Sri Lankan STs (71) resulted in four groups, with a large clonal group (group 1) having 46 STs, and 17 singletons. ST1137 was the commonest ST. Several STs were shared with India, Bangladesh and Cambodia.ConclusionThis study demonstrates the usefulness of high-resolution molecular typing to locate isolates within the broad geographical boundaries of B. pseudomallei at a global level and reveals that Sri Lankan isolates are intermediate between Southeast Asia and Oceania.  相似文献   
17.
Zeta-crystallin/quinone reductase (CRYZ) is an NADPH oxidoreductase expressed at very high levels in the lenses of two groups of mammals: camelids and some hystricomorph rodents. It is also expressed at very low levels in all other species tested. Comparative analysis of the mechanisms mediating the high expression of this enzyme/crystallin in the lens of the Ilama (Lama guanacoe) and the guinea pig (Cavia porcellus) provided evidence for independent recruitment of this enzyme as a lens crystallin in both species and allowed us to elucidate for the first time the mechanism of lens recruitment of an enzyme- crystallin. The data presented here show that in both species such recruitment most likely occurred through the generation of new lens promoters from nonfunctional intron sequences by the accumulation of point mutations and/or small deletions and insertions. These results further support the idea that recruitment of CRYZ resulted from an adaptive process in which the high expression of CRYZ in the lens provides some selective advantage rather than from a purely neutral evolutionary process.   相似文献   
18.
19.
20.
Low-temperature kinetics of the reaction between O2 and cytochrome oxidase suggest the existence of an O2 pocket of limited capacity in membrane-bound cytochrome oxidase, and one of larger capacity in purified cytochrome oxidase. A model is proposed to explain the difference in capacity of the pockets.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号