首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1306篇
  免费   122篇
  国内免费   2篇
  2021年   24篇
  2020年   6篇
  2019年   22篇
  2018年   14篇
  2017年   21篇
  2016年   25篇
  2015年   45篇
  2014年   55篇
  2013年   68篇
  2012年   105篇
  2011年   88篇
  2010年   75篇
  2009年   47篇
  2008年   63篇
  2007年   61篇
  2006年   55篇
  2005年   57篇
  2004年   48篇
  2003年   40篇
  2002年   52篇
  2001年   35篇
  2000年   34篇
  1999年   30篇
  1998年   6篇
  1997年   11篇
  1996年   9篇
  1995年   8篇
  1994年   15篇
  1993年   10篇
  1992年   24篇
  1991年   20篇
  1990年   25篇
  1989年   24篇
  1988年   21篇
  1987年   18篇
  1986年   19篇
  1985年   21篇
  1984年   14篇
  1983年   8篇
  1982年   10篇
  1981年   5篇
  1980年   8篇
  1979年   6篇
  1978年   9篇
  1977年   7篇
  1976年   10篇
  1975年   10篇
  1974年   7篇
  1970年   4篇
  1969年   4篇
排序方式: 共有1430条查询结果,搜索用时 802 毫秒
941.

Background  

Elastin-like polypeptides (ELPs) are useful tools that can be used to non-chromatographically purify proteins. When paired with self-cleaving inteins, they can be used as economical self-cleaving purification tags. However, ELPs and ELP-tagged target proteins have been traditionally expressed using highly enriched media in shake flask cultures, which are generally not amenable to scale-up.  相似文献   
942.
943.
Sesamol is a potent phenolic antioxidant which possesses antimutagenic, antihepatotoxic and antiaging properties. Platelet activation is relevant to a variety of acute thrombotic events and coronary heart diseases. There have been few studies on the effect of sesamol on platelets. Therefore, the aim of this study was to systematically examine the detailed mechanisms of sesamol in preventing platelet activation in vitro and in vivo. Sesamol (2.5?5 μM) exhibited more potent activity of inhibiting platelet aggregation stimulated by collagen than other agonists. Sesamol inhibited collagen-stimulated platelet activation accompanied by [Ca2+]i mobilization, thromboxane A2 (TxA2) formation, and phospholipase C (PLC)γ2, protein kinase C (PKC) and mitogen-activated protein kinase (MAPK) phosphorylation in washed platelets. Sesamol markedly increased cAMP and cGMP levels, endothelial nitric oxide synthase (eNOS) expression and NO release, as well as vasodilator-stimulated phosphoprotein (VASP) phosphorylation. SQ22536, an inhibitor of adenylate cyclase, markedly reversed the sesamol-mediated inhibitory effects on platelet aggregation and p38 MAPK phosphorylation, and sesamol-mediated stimulatory effects on VASP and eNOS phosphorylation, and NO release. Sesamol also reduced hydroxyl radical (OH) formation in platelets. In an in vivo study, sesamol (5 mg/kg) significantly prolonged platelet plug formation in mice. The most important findings of this study demonstrate for the first time that sesamol possesses potent antiplatelet activity, which may involve activation of the cAMP-eNOS/NO-cGMP pathway, resulting in inhibition of the PLCγ2-PKC-p38 MAPK-TxA2 cascade, and, finally, inhibition of platelet aggregation. Sesamol treatment may represent a novel approach to lowering the risk of or improving function in thromboembolism-related disorders.  相似文献   
944.
945.
946.
947.
948.

Background

The choroid plexus (ChP), a component of the blood-brain barrier (BBB), produces the cerebrospinal fluid (CSF) and as a result plays a role in (i) protecting and nurturing the brain as well as (ii) in coordinating neuronal migration during neurodevelopment. Until now ChP development was not analyzed in living vertebrates due to technical problems.

Methodology/Principal Findings

We have analyzed the formation of the fourth ventricle ChP of zebrafish in the GFP-tagged enhancer trap transgenic line SqET33-E20 (Gateways) by a combination of in vivo imaging, histology and mutant analysis. This process includes the formation of the tela choroidea (TC), the recruitment of cells from rhombic lips and, finally, the coalescence of TC resulting in formation of ChP. In Notch-deficient mib mutants the first phase of this process is affected with premature GFP expression, deficient cell recruitment into TC and abnormal patterning of ChP. In Hedgehog-deficient smu mutants the second phase of the ChP morphogenesis lacks cell recruitment and TC cells undergo apoptosis.

Conclusions/Significance

This study is the first to demonstrate the formation of ChP in vivo revealing a role of Notch and Hedgehog signalling pathways during different developmental phases of this process.  相似文献   
949.
Two new compounds, (6S)-hydroxy-29-nor-3,4-seco-cycloart-4(30),24-dien-3-oic acid (1) and 8-[1-(3,4-dihydroxyphenyl)-3-methoxy-3-oxopropyl]epicatechin (3), were isolated by bioassay-guided fractionation from the aerial parts of Antirhea acutata (DC.) Urb. (Rubiaceae). Compound 1 showed moderate inhibitory activities in cyclooxygenase-1 and -2 assays (IC(50) 43.7 and 4.7 microM, respectively), while compound 3 was active in 1,1-diphenyl-2-picrylhydrazyl free-radical and cytochrome c reduction antioxidant assays (IC(50) 29.1 and 16.3 microM, respectively). Additionally, one further new compound was isolated, (3S,24S)-25-trihydroxy-9,19-cycloartane-29-oic acid (2), but this was inactive in the bioassay systems used. Compound 1 is based on the unprecedented 29-nor-3,4-seco-cycloartane skeleton.  相似文献   
950.
The horizontal transfer of the bacterium Wolbachia pipientis between invertebrate hosts hinges on the ability of Wolbachia to adapt to new intracellular environments. The experimental transfer of Wolbachia between distantly related host species often results in the loss of infection, presumably due to an inability of Wolbachia to adapt quickly to the new host. To examine the process of adaptation to a novel host, we transferred a life-shortening Wolbachia strain, wMelPop, from the fruit fly Drosophila melanogaster into a cell line derived from the mosquito Aedes albopictus. After long-term serial passage in this cell line, we transferred the mosquito-adapted wMelPop into cell lines derived from two other mosquito species, Aedes aegypti and Anopheles gambiae. After a prolonged period of serial passage in mosquito cell lines, wMelPop was reintroduced into its native host, D. melanogaster, by embryonic microinjection. The cell line-adapted wMelPop strains were characterized by a loss of infectivity when reintroduced into the original host, grew to decreased densities, and had reduced abilities to cause life-shortening infection and cytoplasmic incompatibility compared to the original strain. We interpret these shifts in phenotype as evidence for genetic adaptation to the mosquito intracellular environment. The use of cell lines to preadapt Wolbachia to novel hosts is suggested as a possible strategy to improve the success of transinfection in novel target insect species.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号