首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   110篇
  免费   9篇
  国内免费   1篇
  120篇
  2021年   1篇
  2020年   2篇
  2017年   1篇
  2016年   2篇
  2015年   3篇
  2014年   4篇
  2013年   2篇
  2012年   2篇
  2011年   2篇
  2010年   2篇
  2009年   6篇
  2008年   4篇
  2007年   6篇
  2006年   5篇
  2005年   4篇
  2004年   4篇
  2003年   3篇
  2002年   4篇
  2001年   5篇
  2000年   3篇
  1999年   7篇
  1998年   10篇
  1997年   2篇
  1996年   3篇
  1995年   6篇
  1994年   2篇
  1993年   4篇
  1992年   5篇
  1990年   1篇
  1989年   2篇
  1986年   2篇
  1984年   3篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1977年   1篇
  1975年   1篇
  1973年   1篇
  1970年   1篇
排序方式: 共有120条查询结果,搜索用时 15 毫秒
41.
The demonstration that interleukin 2 (IL-2) is a lectin specific for oligomannosides allows to understand a new function for this cytokine: as a bifunctional molecule when bound to its receptor ss, IL-2 associates the latter which the CD3/TCR complex, interacting with oligosaccharides of CD3 through its carbohydrate-recognition domain (Zanetta et al. , 1996, Biochem. J., 318, 49-53). This induces the tyrosine phosphorylation of the IL-2R beta by ++p56(lck) , the first step of the IL-2-dependent signaling. Since this specific association is disrupted in vitro by oligomannosides with five and six mannose residues, we made the hypothesis that pathogenic cells or microorganisms could bind IL-2, consequently disturbing the IL-2- dependent response. This study shows that the pathogenic yeast Candida albicans (in contrast with nonpathogenic yeasts) binds high amounts of IL-2 as did cancer cells. In contrast with cancer cells, yeasts do not bind the Man6GlcNAc2-specific lectin CSL, an endogenous "amplifier of activation signals" (Zanetta et al. , 1995, Biochem. J., 311, 629-636).   相似文献   
42.
Previously, treatment of Tamm-Horsfall glycoprotein (THp) from different donors with endo-beta-galactosidase has been shown to liberate a tetra- and a Sd(a)-active pentasaccharide, concluding the presence of N-linked carbohydrate chains containing additional N - acetyllactosamine units. These type of oligosaccharides were not found in a detailed structure elucidation of the carbohydrate moiety of THp of one male donor, suggesting a donor-specific feature for these type of structures. Therefore, THp was isolated from four healthy male donors and each subjected to endo-beta-galactosidase treatment in order to release these tetra- and Sd(a)-active pentasaccharide. Differences were observed in the total amount of released tetra- and Sda-active pentasaccharide of the used donors (42, 470, 478, 718 microg/100 mg THp), indicating that the presence of repeating N-acetyllactosamine units incorporated into the N-glycan moiety of THp is donor specific. Furthermore, a higher expression of the Sd(a) determinant on antennae which display N-acetyllactosamine elongation was observed, suggesting a better accessibility for the beta-N-acetylgalactosaminyltransferase. In order to characterize the N-glycans containing repeating N- acetyllactosamine units, carbohydrate chains were enzymatically released from THp and isolated. The tetraantennary fraction, which accounts for more than 33% of the total carbohydrate moiety of THp, was used to isolate oligosaccharides containing additional N - acetyllactosamine units. Five N-linked tetraantennary oligosaccharides containing a repeating N-acetyllactosamine unit were identified, varying from structures bearing four Sd(a) determinants to structures containing no Sd(a) determinant (see below). One compound was used in order to specify the branch location of the additional N- acetyllactosamine unit, and it appeared that only the Gal-6' and Gal-8' residues were occupied by a repeating N -acetyllactosamine unit.   相似文献   
43.
44.
The chiA gene of Vibrio cholerae encodes a polypeptide which degrades chitin, a homopolymer of N-acetylglucosamine (GlcNAc) found in cell walls of fungi and in the integuments of insects and crustaceans. chiA has a coding capacity corresponding to a polypeptide of 846 amino acids having a predicted molecular mass of 88.7 kDa. A 52-bp region with promoter activity was found immediately upstream of the chiA open reading frame. Insertional inactivation of the chromosomal copy of the gene confirmed that expression of chitinase activity by V. cholerae required chiA. Fluorescent analogues were used to demonstrate that the enzymatic activity of ChiA was specific for β,1-4 glycosidic bonds located between GlcNAc monomers in chitin. Antibodies against ChiA were obtained by immunization of a rabbit with a MalE-ChiA hybrid protein. Polypeptides with antigenic similarity to ChiA were expressed by classical and El Tor biotypes of V. cholerae and by the closely related bacterium Aeromonas hydrophila. Immunoblotting experiments using the wild-type strain 569B and the secretion mutant M14 confirmed that ChiA is an extracellular protein which is secreted by the eps system. The eps system is also responsible for secreting cholera toxin, an oligomeric protein with no amino acid homology to ChiA. These results indicate that ChiA and cholera toxin have functionally similar extracellular transport signals that are essential for eps-dependent secretion.Chitin, a homopolymer of N-acetylglucosamine (GlcNAc), is a major component of the cell walls of fungi and the integuments of crustaceans and insects (38). The molecule is one of the most abundant biopolymers in nature and is used by many microorganisms as a source of carbon. Utilization of chitin as a nutrient usually requires degradation of the molecule to GlcNAc monomers. Complete degradation of chitin in both prokaryotes and eukaryotes is a two-step process which involves successive hydrolysis of the β,1-4 glycosidic bonds linking the GlcNAc subunits. In the first stage, endochitinase binds and degrades tetrameric and longer polymeric forms of GlcNAc to produce the disaccharide chitobiose. In the second step, chitobiase hydrolyzes chitobiose to GlcNAc monomers. The enzymes for chitin degradation are usually coordinately regulated and in several organisms are induced by chitosan, chitobiose, GlcNAc, or glucosamine (2, 7, 44).Members of the family Vibrionaceae thrive in marine environments where chitin is abundant. It is not surprising that many Vibrionaceae evolved systems for utilizing chitin as a nutrient source. Chitinases have been identified in Vibrio vulnificus (56, 61), V. harveyi (57), and V. parahemolyticus (29, 30). Nucleotide sequence analysis indicated that the chitinase of V. harveyi is homologous with human hexosamindase, indicating that the two enzymes, as well as other chitinases, are members of a phylogenically related group (56).V. cholerae is a human intestinal pathogen that resides in brackish and marine waters. In vitro experiments established that V. cholerae has the potential to use chitin as a sole source of carbon for growth (15). It is likely, therefore, that production of chitinase (29, 30, 42) by V. cholerae provides the bacterium with a readily available nutrient source in aquatic environments. Hydrolysis of chitin by V. cholerae is an extracellular process that requires expression of epsE, one of a cluster of genes in the eps locus (43, 4648). Several proteins of V. cholerae are dependent on the eps system for extracellular transport, including cholera toxin (CT), an undefined protease, and a chitinase activity (43, 48). Although expression of chitinase activity has been reported for V. cholerae, the enzyme responsible for the activity has not been identified. To further characterize the extracellular chitinase of V. cholerae, we cloned a gene encoding chitinase activity. Here we report the nucleotide sequence of a cloned endochitinase gene and establish that the protein encoded by that gene is secreted to the extracellular environment by an eps-dependent mechanism.  相似文献   
45.
The objectives of this study were to identify antimicrobial resistance genotypes for Campylobacter and to evaluate the correlation between resistance phenotypes and genotypes using in vitro antimicrobial susceptibility testing and whole-genome sequencing (WGS). A total of 114 Campylobacter species isolates (82 C. coli and 32 C. jejuni) obtained from 2000 to 2013 from humans, retail meats, and cecal samples from food production animals in the United States as part of the National Antimicrobial Resistance Monitoring System were selected for study. Resistance phenotypes were determined using broth microdilution of nine antimicrobials. Genomic DNA was sequenced using the Illumina MiSeq platform, and resistance genotypes were identified using assembled WGS sequences through blastx analysis. Eighteen resistance genes, including tet(O), blaOXA-61, catA, lnu(C), aph(2)-Ib, aph(2)-Ic, aph(2)-If, aph(2)-Ig, aph(2)-Ih, aac(6)-Ie-aph(2)-Ia, aac(6)-Ie-aph(2)-If, aac(6)-Im, aadE, sat4, ant(6), aad9, aph(3)-Ic, and aph(3)-IIIa, and mutations in two housekeeping genes (gyrA and 23S rRNA) were identified. There was a high degree of correlation between phenotypic resistance to a given drug and the presence of one or more corresponding resistance genes. Phenotypic and genotypic correlation was 100% for tetracycline, ciprofloxacin/nalidixic acid, and erythromycin, and correlations ranged from 95.4% to 98.7% for gentamicin, azithromycin, clindamycin, and telithromycin. All isolates were susceptible to florfenicol, and no genes associated with florfenicol resistance were detected. There was a strong correlation (99.2%) between resistance genotypes and phenotypes, suggesting that WGS is a reliable indicator of resistance to the nine antimicrobial agents assayed in this study. WGS has the potential to be a powerful tool for antimicrobial resistance surveillance programs.  相似文献   
46.
47.

Background  

Mitochondrial and nuclear genes have generally been employed for different purposes in molecular systematics, the former to resolve relationships within recently evolved groups and the latter to investigate phylogenies at a deeper level. In the case of rapid and recent evolutionary radiations, mitochondrial genes like cytochrome b (CYB) are often inefficient for resolving phylogenetic relationships. One of the best examples is illustrated by Arvicolinae rodents (Rodentia; Muridae), the most impressive mammalian radiation of the Northern Hemisphere which produced voles, lemmings and muskrats. Here, we compare the relative contribution of a nuclear marker – the exon 10 of the growth hormone receptor (GHR) gene – to the one of the mitochondrial CYB for inferring phylogenetic relationships among the major lineages of arvicoline rodents.  相似文献   
48.
In Saccharomyces cerevisiae, reduction of NAD(+) to NADH occurs in dissimilatory as well as in assimilatory reactions. This review discusses mechanisms for reoxidation of NADH in this yeast, with special emphasis on the metabolic compartmentation that occurs as a consequence of the impermeability of the mitochondrial inner membrane for NADH and NAD(+). At least five mechanisms of NADH reoxidation exist in S. cerevisiae. These are: (1) alcoholic fermentation; (2) glycerol production; (3) respiration of cytosolic NADH via external mitochondrial NADH dehydrogenases; (4) respiration of cytosolic NADH via the glycerol-3-phosphate shuttle; and (5) oxidation of intramitochondrial NADH via a mitochondrial 'internal' NADH dehydrogenase. Furthermore, in vivo evidence indicates that NADH redox equivalents can be shuttled across the mitochondrial inner membrane by an ethanol-acetaldehyde shuttle. Several other redox-shuttle mechanisms might occur in S. cerevisiae, including a malate-oxaloacetate shuttle, a malate-aspartate shuttle and a malate-pyruvate shuttle. Although key enzymes and transporters for these shuttles are present, there is as yet no consistent evidence for their in vivo activity. Activity of several other shuttles, including the malate-citrate and fatty acid shuttles, can be ruled out based on the absence of key enzymes or transporters. Quantitative physiological analysis of defined mutants has been important in identifying several parallel pathways for reoxidation of cytosolic and intramitochondrial NADH. The major challenge that lies ahead is to elucidate the physiological function of parallel pathways for NADH oxidation in wild-type cells, both under steady-state and transient-state conditions. This requires the development of techniques for accurate measurement of intracellular metabolite concentrations in separate metabolic compartments.  相似文献   
49.
50.
A highly abundant satellite DNA comprising 20% of the Meloidogyne fallax (Nematoda, Tylenchida) genome was cloned and sequenced. The satellite monomer is 173 bp long and has a high A + T content of 72.3%, with frequent runs of A's and T's. The sequence variability of the monomers is 2.7%, mainly due to random distribution of single-point mutations. A search for evidence of internal repeated subunits in the monomer sequence revealed a 6-bp motif (AAATTT) for which five degenerated repeats, differing by just a single base pair, could be identified. Pairwise comparison of the M. fallax satellite with those from the sympatric species Meloidogyne chitwoodi and Meloidogyne hapla revealed a high sequence similarity (68.39%) with one satellite DNA subfamily in M. chitwoodi, which indicated an unexpected close relationship between them. Given the high copy number and the extreme sequence homogeneity among monomeric units, it may be assumed that the satellite DNA of M. fallax could have evolved through some recent and extensive amplification burst in the nematode genome. In this case, its relatively short life would not yet have allowed the accumulation of random mutations in independent amplified repeats. Considering the morphological resemblance between the two species and their ability to produce interspecific fertile hybrids under controlled conditions, these results indicate that M. fallax may share a common ancestor with M. chitwoodi, from which it could have diverged recently. All these data suggest that M. fallax could be the result of a recent speciation process and show that Meloidogyne satellite DNAs may be of interest to resolve phylogenetic relationships among closely related species from this genus.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号