首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   213篇
  免费   13篇
  2022年   1篇
  2021年   7篇
  2020年   2篇
  2019年   6篇
  2018年   7篇
  2017年   4篇
  2016年   7篇
  2015年   4篇
  2014年   7篇
  2013年   6篇
  2012年   6篇
  2011年   18篇
  2010年   10篇
  2009年   12篇
  2008年   14篇
  2007年   14篇
  2006年   13篇
  2005年   14篇
  2004年   5篇
  2003年   8篇
  2002年   8篇
  2001年   5篇
  2000年   3篇
  1999年   3篇
  1998年   7篇
  1997年   1篇
  1995年   2篇
  1994年   2篇
  1993年   2篇
  1992年   3篇
  1989年   2篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   3篇
  1983年   2篇
  1980年   3篇
  1979年   5篇
  1975年   1篇
  1974年   1篇
  1964年   1篇
  1948年   2篇
  1937年   2篇
排序方式: 共有226条查询结果,搜索用时 15 毫秒
201.
Bile salts (BS) have been shown to suppress the secretion of very-low-density lipoprotein-triglyceride (VLDL-TG) in rat and human hepatocytes in vitro. In the present study, we investigated whether the transhepatic BS flux affects VLDL-TG concentration and hepatic VLDL-TG secretion in vivo. In rats, the transhepatic BS flux was quantitatively manipulated by 1-week chronic bile diversion (BD), followed by intraduodenal infusion with taurocholate (TC) or saline for 6 h. In mice, the transhepatic BS flux was manipulated by a 3-week dietary supplementation with TC (0.5 wt.%) or cholestyramine (2 wt.%). In rats, BD followed by saline or TC infusion did not affect plasma triacylglycerol (TG) concentration, hepatic TG production rate or VLDL lipid composition, compared to control rats. In mice supplemented for 3 weeks with TC or cholestyramine, the transhepatic BS flux was increased by 335% and decreased by 48%, respectively, compared to controls. Among the three experimental groups of mice, an inverse relationship between transhepatic BS flux and either plasma TG concentration (R(2)=0.89) or VLDL-TG production rate (R(2)=0.87) was observed, but differences were relatively small. Present data support the concept that BS can reduce VLDL-TG concentration and inhibit hepatic TG secretion in vivo; however, this occurs only at supraphysiological transhepatic BS fluxes in mice.  相似文献   
202.
Essential fatty acid (EFA) deficiency induces fat malabsorption, but the pathophysiological mechanism is unknown. Bile salts (BS) and EFA-rich biliary phospholipids affect dietary fat solubilization and chylomicron formation, respectively. We investigated whether altered biliary BS and/or phospholipid secretion mediate EFA deficiency-induced fat malabsorption in mice. Free virus breed (FVB) mice received EFA-containing (EFA(+)) or EFA-deficient (EFA(-)) chow for 8 wk. Subsequently, fat absorption, bile flow, and bile composition were determined. Identical dietary experiments were performed in multidrug resistance gene-2-deficient [Mdr2((-/-))] mice, secreting phospholipid-free bile. After 8 wk, EFA(-)-fed wild-type [Mdr2((+/+))] and Mdr2((-/-)) mice were markedly EFA deficient [plasma triene (20:3n-9)-to-tetraene (20:4n-6) ratio >0.2]. Fat absorption decreased (70.1 +/- 4.2 vs. 99.1 +/- 0.3%, P < 0.001), but bile flow and biliary BS secretion increased in EFA(-) mice compared with EFA(+) controls (4.87 +/- 0.36 vs. 2.87 +/- 0.29 microl x min(-1) x 100 g body wt(-1), P < 0.001, and 252 +/- 30 vs. 145 +/- 20 nmol x min(-1) x 100 g body wt(-1), P < 0.001, respectively). BS composition was similar in EFA(+)- and EFA(-)-fed mice. Similar to EFA(-) Mdr2((+/+)) mice, EFA(-) Mdr2((-/-)) mice developed fat malabsorption associated with twofold increase in bile flow and BS secretion. Fat malabsorption in EFA(-) mice is not due to impaired biliary BS or phospholipid secretion. We hypothesize that EFA deficiency affects intracellular processing of dietary fat by enterocytes.  相似文献   
203.
Bile salts (BS) inhibit the secretion of apolipoprotein B (apoB) and triacylglycerol (TG) in primary rat, mouse and human hepatocytes and in mice in vivo. We investigated whether lipidation of apoB into a lipoprotein particle is required for this inhibitory action of BS. The sodium/taurocholate co-transporting polypeptide (Ntcp) was co-expressed in McArdle-RH7777 (McA-RH7777) cells stably expressing the full-length human apoB100 (h-apoB100, secreted as TG-rich lipoprotein particles) or carboxyl-truncated human apoB18 (h-apoB18, secreted in lipid-free form). The doubly transfected cell lines (h-apoB/r-Ntcp) effectively accumulated taurocholic acid (TC). TC incubation decreased the secretion of endogenous rat apoB100 (-50%) and h-apoB18 (-35%), but did not affect secretion of rat apoA-I. Pulse-chase experiments (35S-methionine) indicated that the impaired secretion of radiolabeled h-apoB18 and h-apoB100 was associated with accelerated intracellular degradation. The calpain protease inhibitor N-acetyl-leucyl-leucyl-norleucinal (ALLN) partially inhibited intracellular apoB degradation but did not affect the amount of either h-apoB18 or h-apoB100 secreted into the medium, indicating that inhibition of apoB secretion by TC is not due to calpain-dependent proteasomal degradation. We conclude that TC does not inhibit apoB secretion by interference with its lipidation, but rather involves a mechanism dependent on the N-terminal end of apoB.  相似文献   
204.
We evaluated the role of apolipoprotein E (apoE) in the clearance of neutral and negatively charged liposomes by hepatocytes in apoE-deficient mice. Negatively charged liposomes were cleared at identical rates in apoE-deficient and wild-type mice; neutral liposomes were cleared at a 3.6-fold slower rate in apoE-deficient mice. ApoE deficiency did not affect hepatic uptake of negatively charged liposomes but lowered that of neutral liposomes >5-fold. Hepatocyte uptake of neutral liposomes was reduced >20-fold in apoE-deficient mice; that of negatively charged liposomes remained unchanged. We conclude that uptake of neutral liposomes by hepatocytes is nearly exclusively apoE-mediated.  相似文献   
205.
Chemokine receptors form a large subfamily of G protein-coupled receptors that predominantly activate heterotrimeric Gi proteins and are involved in immune cell migration. CCX-CKR is an atypical chemokine receptor with high affinity for CCL19, CCL21, and CCL25 chemokines, but is not known to activate intracellular signaling pathways. However, CCX-CKR acts as decoy receptor and efficiently internalizes these chemokines, thereby preventing their interaction with other chemokine receptors, like CCR7 and CCR9. Internalization of fluorescently labeled CCL19 correlated with β-arrestin2-GFP translocation. Moreover, recruitment of β-arrestins to CCX-CKR in response to CCL19, CCL21, and CCL25 was demonstrated using enzyme-fragment complementation and bioluminescence resonance energy transfer methods. To unravel why CCX-CKR is unable to activate Gi signaling, CCX-CKR chimeras were constructed by substituting its intracellular loops with the corresponding CCR7 or CCR9 domains. The signaling properties of chimeric CCX-CKR receptors were characterized using a cAMP-responsive element (CRE)-driven reporter gene assay. Unexpectedly, wild type CCX-CKR and a subset of the chimeras induced an increase in CRE activity in response to CCL19, CCL21, and CCL25 in the presence of the Gi inhibitor pertussis toxin. CCX-CKR signaling to CRE required an intact DRY motif. These data suggest that inactive Gi proteins impair CCX-CKR signaling most likely by hindering the interaction of this receptor with pertussis toxin-insensitive G proteins that transduce signaling to CRE. On the other hand, recruitment of the putative signaling scaffold β-arrestin to CCX-CKR in response to chemokines might allow activation of yet to be identified signal transduction pathways.  相似文献   
206.
Tissue plasminogen activator (t-PA) and plasminogen activator inhibitor 1 (PAI-1) directly influence thrombus formation and degradation and thereby risk for arterial thrombosis. Activation of the renin-angiotensin system has been linked to the production of PAI-1 expression via the angiotensin II type 1 receptor (AT1R). In addition, bradykinin can induce the release of t-PA through a B2 receptor mechanism. In the present study, we aimed to investigate the epistatic effects of polymorphisms in genes from the renin-angiotensin, bradykinin, and fibrinolytic systems on plasma t-PA and PAI-1 levels in a large population-based sample (n=2527). We demonstrated a strong significant interaction within genetic variations of the bradykinin B2 gene (P=0.002) and between ACE and bradykinin B2 (p=0.003) polymorphisms on t-PA levels in females. In males, polymorphisms in the bradykinin B2 and AT1R gene showed the most strong effect on t-PA levels (P=0.006). In both females and males, the bradykinin B2 gene interacted with AT1R gene on plasma PAI-1 levels (P=0.026 and P=0.039, respectively). In addition, the current study found a borderline significant interaction between PAI 4G5G and ACE I/D on plasma t-PA and PAI-1 levels. These results support the idea that the interplay between the renin-angiotensin, bradykinin, and fibrinolytic systems might play an important role in t-PA and PAI-1 biology.  相似文献   
207.
The cattle tick Rhipicephalus (Boophilus) microplus is one of the most harmful parasites affecting bovines. Similarly to other hematophagous ectoparasites, R. microplus saliva contains a collection of bioactive compounds that inhibit host defenses against tick feeding activity. Thus, the study of tick salivary components offers opportunities for the development of immunological based tick control methods and medicinal applications. So far, only a few proteins have been identified in cattle tick saliva. The aim of this work was to identify proteins present in R. microplus female tick saliva at different feeding stages. Proteomic analysis of R. microplus saliva allowed identifying peptides corresponding to 187 and 68 tick and bovine proteins, respectively. Our data confirm that (i) R. microplus saliva is complex, and (ii) that there are remarkable differences in saliva composition between partially engorged and fully engorged female ticks. R. microplus saliva is rich mainly in (i) hemelipoproteins and other transporter proteins, (ii) secreted cross-tick species conserved proteins, (iii) lipocalins, (iv) peptidase inhibitors, (v) antimicrobial peptides, (vii) glycine-rich proteins, (viii) housekeeping proteins and (ix) host proteins. This investigation represents the first proteomic study about R. microplus saliva, and reports the most comprehensive Ixodidae tick saliva proteome published to date. Our results improve the understanding of tick salivary modulators of host defense to tick feeding, and provide novel information on the tick-host relationship.  相似文献   
208.

Background  

Streptococcus mutans is a major pathogen in human dental caries. One of its important virulence properties is the ability to form biofilms (dental plaque) on tooth surfaces. Eradication of such biofilms is extremely difficult. We therefore screened a library of secondary metabolites from myxobacteria for their ability to damage biofilms of S. mutans.  相似文献   
209.
210.
Abstract: Following local application of kainic acid, changes in the contents of Na+, K+, Ca2+, and Mg2+ of the striatum, cerebellum, and hippocampus of the rat were observed at various times after surgery. Within 1 h the levels of K+ decreased 20% whereas the levels of Na+ and Ca2+ increased at least 50% and 20%, respectively. These changes persisted for more than 8 weeks. Ca2+ levels rose further, to more than 10-fold during 8 weeks. The Mg2+ levels were slightly and only transiently decreased. Unilateral injections of kainate into the striatum affected the contents of these cations not only in this area, but also in the overlying cerebral cortex, the olfactory tubercle, and the ipsilateral substantia nigra. The Ca2+ increases were less when rats were kept on a diet deficient in Ca2+ and vitamin D. 45Ca2+, intravenously administered, accumulated significantly more in the kainate-lesioned striatum and substantia nigra than in the homotopic contralateral areas. Electron microscopic examination of the localization of Ca2+ with the oxalate-pyroantimonate technique showed the appearance of extracellularly located deposits and the accumulation of Ca2+ in (possibly degenerating) myelinated axons in kainate-lesioned striata. This study provides evidence that calcification of cerebral tissue is closely associated with neurodegenerative processes and shows that kainate may serve as a tool to elucidate the mechanism of brain calcification. The results are discussed in relation to idiopathic calcinosis (striopallidodentate calcinosis, Fahr's disease).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号