首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   190篇
  免费   8篇
  198篇
  2022年   2篇
  2021年   8篇
  2020年   2篇
  2019年   3篇
  2018年   4篇
  2017年   2篇
  2016年   1篇
  2015年   3篇
  2014年   6篇
  2013年   6篇
  2012年   6篇
  2011年   13篇
  2010年   9篇
  2009年   14篇
  2008年   14篇
  2007年   14篇
  2006年   14篇
  2005年   12篇
  2004年   4篇
  2003年   8篇
  2002年   10篇
  2001年   1篇
  2000年   1篇
  1999年   3篇
  1998年   7篇
  1997年   1篇
  1995年   3篇
  1994年   2篇
  1993年   3篇
  1992年   4篇
  1989年   2篇
  1988年   1篇
  1986年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1980年   2篇
  1979年   4篇
  1974年   2篇
  1968年   2篇
  1965年   1篇
排序方式: 共有198条查询结果,搜索用时 15 毫秒
31.
Germplasm must be stored under optimal conditions to maximize longevity and efficiently maintain genetic resources. In order to identify optimal storage conditions, we investigated the effects of temperature (−5 to 45°C) and water content (<0.17 g H2O g−1 dry weight) on longevity of Typha latifolia L. pollen. Longevity was highest at water contents corresponding to storage relative humidity (RH) of 11‐15% which corresponded to the shoulder of water sorption isotherms. Also coinciding with this shoulder were abrupt changes in heat capacity of water present in the pollen. Consistent with changes in isotherms with temperature and the concept of critical RH for storage, optimum water contents increased with decreasing temperature. An attempt was made to explain the aging behavior according to the glass concept. The water content‐temperature combinations of optimal storage were found to be below the glass transition curve, indicating that optimum storage conditions are achieved when intracellular glasses are present. We also found a change in activation energy of aging in Arrhenius plots around Tg, demonstrating a change in aging kinetics when the glassy state is lost. We concluL that Tg curves cannot be used solely to predict precise conditions of optimum storage, but might be useful for predictions of storage longevity above optimum water contents. The data imply that too much drying reduces longevity and should be avoided, particularly when cryogenic storage is considered.  相似文献   
32.
33.

Introduction

Frail COPD patients are frequently not accepted for regular pulmonary rehabilitation programs due to low physical condition and functional limitations. Rehabilitation programs in nursing homes for geriatric patients with COPD have been developed. The effects of such programs are largely unknown.

Aims

To assess the course of COPD-related hospital admissions and exercise tolerance in a cohort of frail COPD patients participating in geriatric COPD rehabilitation.

Methods

Retrospective observational study with a follow up of 12 months after discharge from rehabilitation. COPD related hospital admission days were measured in the year before and after participating rehabilitation. Exercise tolerance was measured by the six minute walk test (6MWT) at admission and at discharge from rehabilitation.

Results

Fifty-eight participants accomplished the rehabilitation program. Twelve patients died in the first year after discharge. The median number of hospital admission days in the year before participating rehabilitation was 21 (IQR 10–33). The first year after discharge this was decreased to a median of 6 (IQR 0–12). The 6MWT increased from 194 (SD 85) meters at admission to 274 (SD 95) meters at discharge (mean difference 80 m, SD 72; p < 0.05).

Conclusions

Geriatric COPD rehabilitation in a nursing home setting seems to reduce hospital admissions in frail COPD patients and to increase exercise tolerance.
  相似文献   
34.
Recent studies have indicated that direct intestinal secretion of plasma cholesterol significantly contributes to fecal neutral sterol loss in mice. The physiological relevance of this novel route, which represents a part of the reverse cholesterol transport pathway, has not been directly established in vivo as yet. We have developed a method to quantify the fractional and absolute contributions of several cholesterol fluxes to total fecal neutral sterol loss in vivo in mice, by assessing the kinetics of orally and intravenously administered stable isotopically labeled cholesterol combined with an isotopic approach to assess the fate of de novo synthesized cholesterol. Our results show that trans-intestinal cholesterol excretion significantly contributes to removal of blood-derived free cholesterol in C57Bl6/J mice (33% of 231 μmol/kg/day) and that pharmacological activation of LXR with T0901317 strongly stimulates this pathway (63% of 706 μmol/kg/day). Trans-intestinal cholesterol excretion is impaired in mice lacking Abcg5 (−4%), suggesting that the cholesterol transporting Abcg5/Abcg8 heterodimer is involved in this pathway. Our data demonstrate that intestinal excretion represents a quantitatively important route for fecal removal of neutral sterols independent of biliary secretion in mice. This pathway is sensitive to pharmacological activation of the LXR system. These data support the concept that the intestine substantially contributes to reverse cholesterol transport.Reverse cholesterol transport (RCT)3 is defined as the flux of excess cholesterol from peripheral tissues toward the liver followed by biliary secretion and subsequent disposal via the feces (1). Accumulation of cholesterol in macrophages in the vessel wall is considered a primary event in the development of atherosclerosis and, therefore, removal of excess cholesterol from these cells is of crucial importance for prevention and/or treatment of atherosclerotic cardiovascular diseases. It is generally accepted that HDL is the obligate transport vehicle in RCT and that plasma HDL levels reflect the capacity to accommodate this flux. In line herewith, HDL-raising therapies are currently considered as a promising strategy for prevention and treatment of atherosclerotic cardiovascular diseases (2). In the “classical” scenario, the liver has a central role in RCT (3). Biliary secretion of free cholesterol, facilitated by the heterodimeric ABC-transporter ABCG5/ABCG8 (4), and hepatic conversion of cholesterol into bile acids followed by fecal excretion are referred to as the main routes for quantitatively important elimination of cholesterol from the body. Fecal excretion of sterols is stimulated upon whole body activation of the liver X receptor (LXR, NR1H2/3), a member of the nuclear receptor family for which oxysterols have been identified as natural ligands (5). LXR regulates expression of several genes involved in RCT and activation of LXR by synthetic agonists leads to elevated plasma HDL-cholesterol levels, increased hepatobiliary cholesterol secretion, reduced fractional intestinal cholesterol absorption and increased fecal sterol loss (6). LXR is thus considered an attractive target for therapeutic strategies aimed at stimulation of RCT, which, however, will require approaches to circumvent potential detrimental consequences of LXR activation such as induction of lipogenesis.Recent studies indicate that the classical concept of RCT may require reconsideration. Studies in apoA-I-deficient mice revealed that the magnitude of the centripetal cholesterol flux from the periphery to the liver is not related to the concentration of HDL-cholesterol or apoA-I in plasma (7). Furthermore, Abca1−/− mice that completely lack plasma HDL show unaffected rates of hepatobiliary cholesterol secretion and fecal sterol loss (8). Additionally, mice lacking both Abcg5 and Abcg8 do not show a reduction in fecal neutral sterol excretion to the extent expected on the basis of their strongly reduced hepatobiliary cholesterol secretion (9). Recent studies by Plösch et al. (6) have revealed that increased fecal neutral sterol loss upon general LXR activation cannot be attributed to the increased hepatobiliary cholesterol secretion only, suggesting a major contribution of the intestine in excretion of cholesterol. This potential role of the intestine in cholesterol removal from the body has been corroborated by Kruit et al. (10), who showed that fecal sterol loss is not affected in Mdr2−/− (Abcb4−/−) mice that have a dramatic reduction in biliary cholesterol secretion (11). Moreover, intravenously administered [3H]cholesterol could be recovered in the neutral sterol fraction of the feces in these mice and fecal excretion of neutral sterols was stimulated upon treatment with an LXR agonist (10). However, the exact quantitative contribution of the direct intestinal pathway under physiological conditions has not directly been determined so far. Very recently, intestinal perfusion studies in mice revealed that, in the presence of mixed micelles as cholesterol acceptors in the intestinal lumen, murine enterocytes indeed have a high capacity to secrete cholesterol via a specific process that is most active in the proximal part of the small intestine (12). In addition, it was shown that direct trans-intestinal cholesterol excretion (TICE) could be stimulated by a high fat diet. The existence of a non-biliary route for fecal neutral sterol excretion is further supported by very recent studies by Brown et al. (13) in mice with targeted deletion of hepatic ACAT2.The present study provides insight into the relative and absolute contributions of several cholesterol fluxes relevant to total fecal sterol loss in mice, making use of a panel of stable isotope tracers. Our results show that TICE is a major route for removal of blood-derived free cholesterol and that pharmacological LXR activation strongly stimulates this arm of the reverse cholesterol transport pathway.  相似文献   
35.

Background

High-fat diets promote hepatic lipid accumulation. Paradoxically, these diets also induce lipogenic gene expression in rodent liver. Whether high expression of these genes actually results in an increased flux through the de novo lipogenic pathway in vivo has not been demonstrated.

Methodology/Principal Findings

To interrogate this apparent paradox, we have quantified de novo lipogenesis in C57Bl/6J mice fed either chow, a high-fat or a n-3 polyunsaturated fatty acid (PUFA)-enriched high-fat diet. A novel approach based on mass isotopomer distribution analysis (MIDA) following 1-13C acetate infusion was applied to simultaneously determine de novo lipogenesis, fatty acid elongation as well as cholesterol synthesis. Furthermore, we measured very low density lipoprotein-triglyceride (VLDL-TG) production rates. High-fat feeding promoted hepatic lipid accumulation and induced the expression of lipogenic and cholesterogenic genes compared to chow-fed mice: induction of gene expression was found to translate into increased oleate synthesis. Interestingly, this higher lipogenic flux (+74 µg/g/h for oleic acid) in mice fed the high-fat diet was mainly due to an increased hepatic elongation of unlabeled palmitate (+66 µg/g/h) rather than to elongation of de novo synthesized palmitate. In addition, fractional cholesterol synthesis was increased, i.e. 5.8±0.4% vs. 8.1±0.6% for control and high fat-fed animals, respectively. Hepatic VLDL-TG production was not affected by high-fat feeding. Partial replacement of saturated fat by fish oil completely reversed the lipogenic effects of high-fat feeding: hepatic lipogenic and cholesterogenic gene expression levels as well as fatty acid and cholesterol synthesis rates were normalized.

Conclusions/Significance

High-fat feeding induces hepatic fatty acid synthesis in mice, by chain elongation and subsequent desaturation rather than de novo synthesis, while VLDL-TG output remains unaffected. Suppression of lipogenic fluxes by fish oil prevents from high fat diet-induced hepatic steatosis in mice.  相似文献   
36.

Background

Vascular fibrinolytic balance is maintained primarily by interplay of tissue plasminogen activator (t-PA) and plasminogen activator inhibitor type 1 (PAI-1). Previous research has shown that polymorphisms in genes from the renin-angiotensin (RA), bradykinin, and fibrinolytic systems affect plasma concentrations of both t-PA and PAI-1 through a set of gene-gene interactions. In the present study, we extend this finding by exploring the effects of polymorphisms in genes from these systems on incident cardiovascular disease, explicitly examining two-way interactions in a large population-based study.

Methodology/Principal Findings

Data from the population-based PREVEND study in Groningen, The Netherlands (n = 8,138) were analyzed. The effects of the polymorphisms and their interactions on cardiovascular events were analyzed via Cox proportional hazards models. There was no association between five of the six polymorphisms singly and risk of cardiovascular disease. There was a significant main effect for the ACE I/D polymorphism for both dominant and additive coding schemes. There were significant interactions between the following polymorphism pairs even after adjustment for known risk factors: ACE I/D & PAI-1 4G/5G (p = 0.012), BDKRB2 C181T & ACE I/D (p = 0.016), BDKRB2 C58T & ACE I/D (p = 0.025), BDKRB2 exon 1 I/D & AT1R A1166C (p = 0.017), and BDKRB2 C58T & AT1R A1166C (p = 0.015).

Conclusions/Significance

This study suggests possible interactions between genes from the RA, bradykinin, and fibrinolytic systems on the risk of cardiovascular disease, extending previous research that has demonstrated that interactions among genes from these systems influence plasma concentrations of both t-PA and PAI-1. Further explorations of these interactions are needed.  相似文献   
37.
38.
39.

Background  

The amount of information that can be maintained in an evolutionary system of replicators is limited by genome length, the number of errors during replication (mutation rate) and various external factors that influence the selection pressure. To date, this phenomenon, known as the information threshold, has been studied (both genotypically and phenotypically) in a constant environment and with respect to maintenance (as opposed to accumulation) of information. Here we take a broader perspective on this problem by studying the accumulation of information in an ecosystem, given an evolvable coding structure. Moreover, our setup allows for individual based as well as ecosystem based solutions. That is, all functions can be performed by individual replicators, or complementing functions can be performed by different replicators. In this setup, where both the ecosystem and the individual genomes can evolve their structure, we study how populations cope with high mutation rates and accordingly how the information threshold might be alleviated.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号