首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   540篇
  免费   44篇
  2023年   2篇
  2022年   4篇
  2021年   11篇
  2020年   7篇
  2019年   12篇
  2018年   20篇
  2017年   7篇
  2016年   14篇
  2015年   37篇
  2014年   41篇
  2013年   43篇
  2012年   49篇
  2011年   56篇
  2010年   31篇
  2009年   20篇
  2008年   37篇
  2007年   30篇
  2006年   34篇
  2005年   15篇
  2004年   24篇
  2003年   20篇
  2002年   17篇
  2001年   6篇
  2000年   3篇
  1999年   10篇
  1998年   6篇
  1997年   3篇
  1996年   4篇
  1993年   2篇
  1992年   4篇
  1991年   2篇
  1990年   1篇
  1988年   5篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1983年   1篇
  1980年   2篇
排序方式: 共有584条查询结果,搜索用时 281 毫秒
511.
LLC-PK1, an epithelial cellline derived from the kidney proximal tubule, was used to study theability of the G protein -subunit, Gq, to regulate celldifferentiation. A constitutively active mutant protein,qQ209L, was expressed using theLacSwitch-inducible mammalian expression system. Induction ofqQ209L expression with isopropyl--D-thiogalactopyranoside(IPTG) enhanced phospholipase C activity maximally by 6- to 7.5-fold.Increasing concentrations of IPTG progressively inhibited the activityof two differentiation markers,Na+-dependent hexose transport andalkaline phosphatase activity. Induction ofqQ209L expression also caused achange from an epithelial to a spindle-shaped morphology. The effectsof qQ209L expression on celldifferentiation were similar to those observed with12-O-tetradecanoylphorbol 13-acetate(TPA) treatment. However, protein kinase C (PKC) levels weredownregulated in TPA-treated cells but not inqQ209L-expressing cells,suggesting that the regulation of PKC byGq may be different fromregulation by TPA. Interestingly, the PKC inhibitor GF-109203X did notinhibit the effect of IPTG on the development ofNa+-dependent hexose transport inqQ209L-expressing cells. These data implicate PKC and PKC in the pathway used byGq to block the development ofNa+-dependent hexose transport inIPTG-treated cells.

  相似文献   
512.
Bacteriophage P22 belongs to a family of double-stranded DNA viruses that share common morphogenetic features like DNA packaging into a procapsid precursor and maturation. Maturation involves cooperative expansion of the procapsid shell with concomitant lattice stabilization. The expansion is thought to be mediated by movement of two coat protein domains around a hinge. The metastable conformation of subunit within the procapsid lattice is considered to constitute a late folding intermediate. In order to understand the mechanism of expansion it is necessary to characterize the interactions stabilizing procapsid and mature capsid lattices, respectively. We employ pressure dissociation to compare subunit packing within the procapsid and expanded lattice. Procapsid shells contain larger cavities than the expanded shells, presumably due to polypeptide packing defects. These defects contribute to the metastable nature of the procapsid lattice and are cured during expansion. Improved packing contributes to the increased stability of the expanded shell. Comparison of two temperature-sensitive folding (tsf) mutants of coat protein (T294I and W48Q) with wild-type coat revealed that both mutations markedly destabilized the procapsid shell and yet had little effect on relative stability of the monomeric subunit. Thus, the regions affected by these packing defects constitute subunit interfaces of the procapsid shell. The larger activation volume of pressure dissociation observed for both T294I and W48Q indicates that the decreased stability of these particles is due to increase of cavity defects. These defects in the procapsid lattice are cured upon expansion suggesting that the intersubunit contacts affected by tsf mutations are absent or rearranged in the mature shell. The energetics of the in vitro expansion reaction also suggests that entropic stabilization contributes to the large free energy barrier for expansion.  相似文献   
513.
l-Arginine is substrate for nitric oxide (NO) synthesis and produces pulmonary vasodilatory effects in patients with pulmonary hypertension and in hypoxic animals. We hypothesized that l-arginine would attenuate the increase in oxidative stress and the pulmonary hypertension observed during acute pulmonary embolism (APE). Using an isolated lung perfusion rat model of APE, we examined whether l-arginine (0, 0.1, 0.5, 3, and 10 mmol/L) attenuates the pulmonary hypertension induced by the injection of 6.6 mg/kg of 300 microm Sephadex microspheres into the pulmonary artery. Thiobarbituric acid reactive species (TBA-RS) and nitrite/nitrate (NO(x)) concentrations were measured in lung perfusate to assess oxidative stress and NO production. l-Arginine (0.5, 3, and 10 mmol/L) attenuated (all P<0.05) APE-induced pulmonary hypertension by about 50%. The protective effect of l-arginine was completely reversed by inhibition of NO synthesis with l-NAME (4 mmol/L). In addition, l-arginine (0.5-10 mmol/L) blunted the increase in TBA-RS observed after APE. NO(x) tended to increase only when l-arginine (10 mmol/L) was added to the lung perfusate of non-embolized lungs. Taken together, these findings suggest that l-arginine attenuates APE-induced pulmonary hypertension through antioxidant mechanisms involving increased NO synthesis.  相似文献   
514.
Coping with our cold planet   总被引:1,自引:0,他引:1  
  相似文献   
515.
The diurnal pattern of foraging behaviour in birds is commonly linked to the risk of starvation and predation. During the breeding season, when offspring place additional demands on the quantity of food adults need to collect, diurnal foraging patterns may be influenced to a greater extent by food availability because adults need to balance starvation–predation risks not only for themselves but also their offspring. We used data-loggers to measure diurnal variation in rates of nest visits to 7- to 10-day-old nestlings of the insectivorous Northern Wheatear Oenanthe oenanthe in Swedish farmland habitat. Adults provisioned the nestlings with food for an average 19.5 h each day (= 11 pairs), with visitation rates sharply increasing during the morning, remaining relatively stable between 0800 and 1700 hours, and then declining in the evening. This pattern is similar to daily temperature fluctuations and is consistent with the hypothesis that nest visit rates are a function of temperature-dependent prey availability. Higher rates of nest visits on warm days support this correlation between temperature and offspring feeding. However, without data on the rate of self-feeding by adults it is difficult to distinguish between patterns of nest visits being driven by food availability, or starvation–predation constraints being imposed on the parents; thus, future studies of patterns of offspring feeding should collect data on the self-feeding behaviour of the adults.  相似文献   
516.
Myrtle (Myrtus communis L.), a culinary spice and flavouring agent for alcoholic beverages widespread in the Mediterranean area and especially in Sardinia, contains the structurally unique oligomeric non-prenylated acylphloroglucinols, semimyrtucommulone and myrtucommulone A, whose antioxidant activity was investigated during the oxidative modification of lipid molecules implicated in the onset of cardiovascular diseases. Both acylphloroglucinols showed powerful antioxidant properties during the thermal (140 degrees C), solvent-free degradation of cholesterol. Moreover, the pre-treatment with semimyrtucommulone and myrtucommulone A significantly preserved LDL from oxidative damage induced by Cu(2+) ions at 2h of oxidation, and showed remarkable protective effect on the reduction of polyunsaturated fatty acids and cholesterol, inhibiting the increase of their oxidative products (conjugated dienes fatty acids hydroperoxides, 7beta-hydroxycholesterol, and 7-ketocholesterol). Taking into account the widespread culinary use of myrtle leaves, the results of the present work qualify the natural compounds semimyrtucommulone and myrtucommulone A as interesting dietary antioxidants with potential antiatherogenicity.  相似文献   
517.
Troponin C (TnC) is an 18-kDa acidic protein of the EF-hand family that serves as the trigger for muscle contraction. In this study, we investigated the thermodynamic stability of the C-domain of TnC in all its occupancy states (apo, Mg (2+)-, and Ca (2+)-bound states) using a fluorescent mutant with Phe 105 replaced by Trp (F105W/C-domain, residues 88-162) and (1)H NMR spectroscopy. High hydrostatic pressure was employed as a perturbing agent, in combination with urea or without it. On the basis of changes in Trp emission, the C-domain apo state was denatured by pressure (in the range of 1-1000 bar) in the absence of urea. The fluorescence data were corroborated by following the changes in the (1)H NMR signal of Histidine 128. Addition of Ca (2+) or Mg (2+) increased the C-domain stability so that complete denaturation was attained only by the combined use of high hydrostatic pressure and either 7-8 M or 1.5-2 M urea, respectively. The (1)H NMR spectra in the presence of Ca (2+) was typical of a highly structured protein and allowed us to follow the changes in the local environment of several amino-acid residues as a function of pressure at 4 M Urea. Different residues presented different volume changes, but those that are in the hydrophobic core portrayed values very similar to that obtained for tryptophan 105 as measured by fluorescence, indicating that it is indeed a good probe for the overall tertiary structure. From these experiments, we calculated the thermodynamic parameters (Delta G degrees atm and Delta V) that govern the folding of the C-domain in all its possible physiological states and constructed a thermodynamic cycle. Furthermore, a comparison of the volume and free-energy changes of folding of isolated C-domain with those of intact TnC (F105W) revealed that the N-domain has little effect on the structure of the C-domain, even in the presence of Ca (2+). The volume and free-energy diagrams reveal a landscape of different conformations from the less structured, denatured apo form to the highly structured, Ca (2+)-bound form. The large change in folding free energy of the C-domain that takes place when Ca (2+) binds may explain the much higher Ca (2+) affinity of sites III and IV, 2 orders of magnitude higher than the affinity of sites I and II.  相似文献   
518.
Blood flow requirements of the respiratory muscles (RM) increase markedly during exercise in chronic heart failure (CHF). We reasoned that if the RM could subtract a fraction of the limited cardiac output (QT) from the peripheral muscles, RM unloading would improve locomotor muscle perfusion. Nine patients with CHF (left ventricle ejection fraction = 26 +/- 7%) undertook constant-work rate tests (70-80% peak) receiving proportional assisted ventilation (PAV) or sham ventilation. Relative changes (Delta%) in deoxy-hemoglobyn, oxi-Hb ([O2Hb]), tissue oxygenation index, and total Hb ([HbTOT], an index of local blood volume) in the vastus lateralis were measured by near infrared spectroscopy. In addition, QT was monitored by impedance cardiography and arterial O2 saturation by pulse oximetry (SpO2). There were significant improvements in exercise tolerance (Tlim) with PAV. Blood lactate, leg effort/Tlim and dyspnea/Tlim were lower with PAV compared with sham ventilation (P < 0.05). There were no significant effects of RM unloading on systemic O2 delivery as QT and SpO2 at submaximal exercise and at Tlim did not differ between PAV and sham ventilation (P > 0.05). Unloaded breathing, however, was related to enhanced leg muscle oxygenation and local blood volume compared with sham, i.e., higher Delta[O2Hb]% and Delta[HbTOT]%, respectively (P < 0.05). We conclude that RM unloading had beneficial effects on the oxygenation status and blood volume of the exercising muscles at similar systemic O2 delivery in patients with advanced CHF. These data suggest that blood flow was redistributed from respiratory to locomotor muscles during unloaded breathing.  相似文献   
519.
Chk2 Activation Dependence on Nbs1 after DNA Damage   总被引:16,自引:0,他引:16       下载免费PDF全文
The checkpoint kinase Chk2 has a key role in delaying cell cycle progression in response to DNA damage. Upon activation by low-dose ionizing radiation (IR), which occurs in an ataxia telangiectasia mutated (ATM)-dependent manner, Chk2 can phosphorylate the mitosis-inducing phosphatase Cdc25C on an inhibitory site, blocking entry into mitosis, and p53 on a regulatory site, causing G(1) arrest. Here we show that the ATM-dependent activation of Chk2 by gamma- radiation requires Nbs1, the gene product involved in the Nijmegen breakage syndrome (NBS), a disorder that shares with AT a variety of phenotypic defects including chromosome fragility, radiosensitivity, and radioresistant DNA synthesis. Thus, whereas in normal cells Chk2 undergoes a time-dependent increased phosphorylation and induction of catalytic activity against Cdc25C, in NBS cells null for Nbs1 protein, Chk2 phosphorylation and activation are both defective. Importantly, these defects in NBS cells can be complemented by reintroduction of wild-type Nbs1, but neither by a carboxy-terminal deletion mutant of Nbs1 at amino acid 590, unable to form a complex with and to transport Mre11 and Rad50 in the nucleus, nor by an Nbs1 mutated at Ser343 (S343A), the ATM phosphorylation site. Chk2 nuclear expression is unaffected in NBS cells, hence excluding a mislocalization as the cause of failed Chk2 activation in Nbs1-null cells. Interestingly, the impaired Chk2 function in NBS cells correlates with the inability, unlike normal cells, to stop entry into mitosis immediately after irradiation, a checkpoint abnormality that can be corrected by introduction of the wild-type but not the S343A mutant form of Nbs1. Altogether, these findings underscore the crucial role of a functional Nbs1 complex in Chk2 activation and suggest that checkpoint defects in NBS cells may result from the inability to activate Chk2.  相似文献   
520.
G protein-mediated pathways are fundamental mechanisms of cell signaling. In this paper, the expression and the characterization of the alphai1, alphai3, alphao1, beta1, and gamma2 subunits of the human G protein are described. This approach was developed to evaluate the G protein activation profile of new compounds. pCR-TOPO T7 vectors, engineered to contain the target sequences, were used to transform Escherichia coli competent cells. Subunits were over-expressed in a preparative scale as fusion proteins with a six-histidine tag, and subsequently purified by metal chelate chromatography. Afterward, the His-tag was removed by enterokinase digestion, and the secondary structures of the recombinant subunits were analyzed by circular dichroism. To assess the functionality of the subunits, the rate of GTP hydrolysis and GTPgammaS binding were evaluated both in the absence and in the presence of two modulators: the peptidic activator Mastoparan and the non-peptidic activator N-dodecyl-lysinamide (ML250). Tests were conducted on isolated alpha-subunit and on heterotrimeric alphabetagamma complex, alone or reconstituted in phospholipidic vesicles. Our results show that recombinant subunits are stable, properly folded and, fully active, which makes them suitable candidates for functional studies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号