首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   519篇
  免费   32篇
  国内免费   2篇
  2023年   1篇
  2022年   2篇
  2021年   13篇
  2020年   1篇
  2019年   3篇
  2018年   9篇
  2017年   6篇
  2016年   9篇
  2015年   19篇
  2014年   15篇
  2013年   33篇
  2012年   52篇
  2011年   42篇
  2010年   24篇
  2009年   22篇
  2008年   44篇
  2007年   35篇
  2006年   37篇
  2005年   32篇
  2004年   24篇
  2003年   27篇
  2002年   27篇
  2001年   10篇
  2000年   6篇
  1999年   3篇
  1998年   8篇
  1997年   3篇
  1996年   2篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1992年   4篇
  1991年   5篇
  1990年   3篇
  1989年   2篇
  1988年   1篇
  1987年   3篇
  1986年   4篇
  1984年   2篇
  1983年   1篇
  1982年   4篇
  1981年   2篇
  1978年   3篇
  1977年   1篇
  1975年   2篇
  1973年   1篇
  1969年   1篇
  1967年   1篇
排序方式: 共有553条查询结果,搜索用时 31 毫秒
51.
Interactions between mitochondria and the cytoskeleton are essential for normal mitochondrial morphology, motility and distribution. While microtubules and their motors have been established as important factors for mitochondrial transport, emerging evidence indicates that mitochondria interact with the actin cytoskeleton in many cell types. In certain fungi, such as the budding yeast and Aspergillus, or in plant cells mitochondrial motility is largely actin-based. Even in systems such as neurons, where microtubules are the primary means of long-distance mitochondrial transport, the actin cytoskeleton is required for short-distance mitochondrial movements and for immobilization of the organelle at the cell cortex. The actin cytoskeleton is also involved in the immobilization of mitochondria at the cortex in cultured tobacco cells and in budding yeast. While the exact nature of these immobilizations is not known, they may be important for retaining mitochondria at sites of high ATP utilization or at other cellular locations where they are needed. Recent findings also indicate that mutations in actin or actin-binding proteins can influence mitochondrial pathways leading to cell death. Thus, mitochondria-actin interactions contribute to apoptosis.  相似文献   
52.
AimMigration is a constantly changing adaptation due to the climate condition evolution. The struggle for surviving during harsh winter season is different across Europe, being more complex toward the inner parts of the continent. The current approach explores the Common Buzzard number variation during the cold season and the climatic predictors of birds of prey wintering movements in relation to the possible influences of the Carpathian Mountains, which may act as a geographical barrier providing shelter from cold air outbreak from north and northeast of the continent.LocationRomania (45°N25°E).TaxonBirds of Prey.MethodsWe applied a GLMM to investigate the relation between continental and local climatic factors with the number of Common Buzzard observations in two regions. The first region is located inside the Carpathian Arch and the other one outside, east of this large mountains chain.ResultsThe Common Buzzard numbers wintering Eastern from the Carpathian Mountains are highly influenced by AO (Z = 2.87, p < .05%), while those wintering western are influenced by NAO (Z = 2.17, p < .05%). This is the first proof of separating influences for biodiversity of AO and NAO at continental scale, outlining the influence limit placed over the Eastern Carpathian Mountains.Main conclusionsThe Carpathian Mountains act like a geographic barrier, separating the wintering Common Buzzard populations from both sides of the mountain range. While the high number of individuals in Moldova is related to their eastern and northeastern Europe origins, in Transylvania the large number of individuals observed is related to the more sheltered characteristics of the region attracting individuals from central Europe. Also, since Transylvania region is well sheltered during cold air outbreak, it represents a more favorable region for wintering. From this point of view, we can consider that the Carpathian Mountains are a geographic barrier for wintering birds of prey.  相似文献   
53.
54.
The reactions of molecular oxygen (O2) and nitric oxide (NO) with reduced Thermus thermophilus (Tt) ba3 and bovine heart aa3 were investigated by time-resolved optical absorption spectroscopy to establish possible relationships between the structural diversity of these enzymes and their reaction dynamics. To determine whether the photodissociated carbon monoxide (CO) in the CO flow-flash experiment affects the ligand binding dynamics, we monitored the reactions in the absence and presence of CO using photolabile O2 and NO complexes. The binding of O2/NO to reduced ba3 in the absence of CO occurs with a second-order rate constant of 1 × 109 M? 1 s? 1. This rate is 10-times faster than for the mammalian enzyme, and which is attributed to structural differences in the ligand channels of the two enzymes. Moreover, the O2/NO binding in ba3 is 10-times slower in the presence of the photodissociated CO while the rates are the same for the bovine enzyme. This indicates that the photodissociated CO directly or indirectly impedes O2 and NO access to the active site in Tt ba3, and that traditional CO flow-flash experiments do not accurately reflect the O2 and NO binding kinetics in ba3. We suggest that in ba3 the binding of O2 (NO) to heme a32 + causes rapid dissociation of CO from CuB+ through steric or electronic effects or, alternatively, that the photodissociated CO does not bind to CuB+. These findings indicate that structural differences between Tt ba3 and the bovine aa3 enzyme are tightly linked to mechanistic differences in the functions of these enzymes. This article is part of a Special Issue entitled: Respiratory Oxidases.  相似文献   
55.
The reactions of molecular oxygen (O(2)) and nitric oxide (NO) with reduced Thermus thermophilus (Tt) ba(3) and bovine heart aa(3) were investigated by time-resolved optical absorption spectroscopy to establish possible relationships between the structural diversity of these enzymes and their reaction dynamics. To determine whether the photodissociated carbon monoxide (CO) in the CO flow-flash experiment affects the ligand binding dynamics, we monitored the reactions in the absence and presence of CO using photolabile O(2) and NO complexes. The binding of O(2)/NO to reduced ba(3) in the absence of CO occurs with a second-order rate constant of 1×10(9)M(-1)s(-1). This rate is 10-times faster than for the mammalian enzyme, and which is attributed to structural differences in the ligand channels of the two enzymes. Moreover, the O(2)/NO binding in ba(3) is 10-times slower in the presence of the photodissociated CO while the rates are the same for the bovine enzyme. This indicates that the photodissociated CO directly or indirectly impedes O(2) and NO access to the active site in Tt ba(3), and that traditional CO flow-flash experiments do not accurately reflect the O(2) and NO binding kinetics in ba(3). We suggest that in ba(3) the binding of O(2) (NO) to heme a(3)(2+) causes rapid dissociation of CO from Cu(B)(+) through steric or electronic effects or, alternatively, that the photodissociated CO does not bind to Cu(B)(+). These findings indicate that structural differences between Tt ba(3) and the bovine aa(3) enzyme are tightly linked to mechanistic differences in the functions of these enzymes. This article is part of a Special Issue entitled: Respiratory Oxidases.  相似文献   
56.
57.
Blood-brain barrier (BBB) disruption is a common feature of numerous neurologic disorders. A fundamental question in these diseases is the extent inflammatory immune cells contribute to CNS vascular permeability. We have previously shown that CD8 T cells play a critical role in initiating BBB disruption in the peptide-induced fatal syndrome model developed by our laboratory. However, myelomonocytic cells such as neutrophils have also been implicated in promoting CNS vascular permeability and functional deficit in murine models of neuroinflammatory disease. For this reason, we evaluated neutrophil depletion in a murine model of CD8 T cell-initiated BBB disruption by employing traditionally used anti-granulocyte receptor-1 mAb RB6-8C5 and Ly-6G-specific mAb 1A8. We report that CNS-infiltrating antiviral CD8 T cells express high levels of granulocyte receptor-1 protein and are depleted by treatment with RB6-8C5. Mice treated with RB6-8C5, but not 1A8, display: 1) intact BBB tight junction proteins; 2) reduced CNS vascular permeability visible by gadolinium-enhanced T1-weighted magnetic resonance imaging; and 3) preservation of motor function. These studies demonstrate that traditional methods of neutrophil depletion with RB6-8C5 are broadly immune ablating. Our data also provide evidence that CD8 T cells initiate disruption of BBB tight junction proteins and CNS vascular permeability in the absence of neutrophil support.  相似文献   
58.
Yeast is capable of performing posttranslational modifications, such as N- or O-glycosylation. It has been demonstrated that N-glycans play critical biological roles in therapeutic glycoproteins by modulating pharmacokinetics and pharmacodynamics. However, N-glycan sites on recombinant glycoproteins produced in yeast can be underglycosylated, and hence, not completely occupied. Genomic homology analysis indicates that the Pichia pastoris oligosaccharyltransferase (OST) complex consists of multiple subunits, including OST1, OST2, OST3, OST4, OST5, OST6, STT3, SWP1, and WBP1. Monoclonal antibodies produced in P. pastoris show that N-glycan site occupancy ranges from 75–85 % and is affected mainly by the OST function, and in part, by process conditions. In this study, we demonstrate that N-glycan site occupancy of antibodies can be improved to greater than 99 %, comparable to that of antibodies produced in mammalian cells (CHO), by overexpressing Leishmania major STT3D (LmSTT3D) under the control of an inducible alcohol oxidase 1 (AOX1) promoter. N-glycan site occupancy of non-antibody glycoproteins such as recombinant human granulocyte macrophage colony-stimulating factor (rhGM-CSF) was also significantly improved, suggesting that LmSTT3D has broad substrate specificity. These results suggest that the glycosylation status of recombinant proteins can be improved by heterologous STT3 expression, which will allow for the customization of therapeutic protein profiles.  相似文献   
59.

Background

A series of epidemiologic studies have identified the fungus Alternaria as a major risk factor for asthma. The airway epithelium plays a critical role in the pathogenesis of allergic asthma. These reports suggest that activated airway epithelial cells can produce cytokines such as IL-25, TSLP and IL-33 that induce Th2 phenotype. However the epithelium-derived products that mediate the pro-asthma effects of Alternaria are not well characterized. We hypothesized that exposure of the airway epithelium to Alternaria releasing cytokines that can induce Th2 differentiation.

Methodology/Principal Finding

We used ELISA to measure human and mouse cytokines. Alternaria extract (ALT-E) induced rapid release of IL-18, but not IL-4, IL-9, IL-13, IL-25, IL-33, or TSLP from cultured normal human bronchial epithelial cells; and in the BAL fluids of naïve mice after challenge with ALT-E. Both microscopic and FACS indicated that this release was associated with necrosis of epithelial cells. ALT-E induced much greater IL-18 release compared to 19 major outdoor allergens. Culture of naïve CD4 cells with rmIL-18 induced Th2 differentiation in the absence of IL-4 and STAT6, and this effect was abrogated by disrupting NF- κB p50 or with a NEMO binding peptide inhibitor.

Conclusion/Significance

Rapid and specific release of IL-18 from Alternaria-exposed damaged airway epithelial cells can directly initiate Th2 differentiation of naïve CD4+ T-cells via a unique NF-κB dependent pathway.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号