首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   519篇
  免费   32篇
  国内免费   2篇
  2023年   1篇
  2022年   2篇
  2021年   13篇
  2020年   1篇
  2019年   3篇
  2018年   9篇
  2017年   6篇
  2016年   9篇
  2015年   19篇
  2014年   15篇
  2013年   33篇
  2012年   52篇
  2011年   42篇
  2010年   24篇
  2009年   22篇
  2008年   44篇
  2007年   35篇
  2006年   37篇
  2005年   32篇
  2004年   24篇
  2003年   27篇
  2002年   27篇
  2001年   10篇
  2000年   6篇
  1999年   3篇
  1998年   8篇
  1997年   3篇
  1996年   2篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1992年   4篇
  1991年   5篇
  1990年   3篇
  1989年   2篇
  1988年   1篇
  1987年   3篇
  1986年   4篇
  1984年   2篇
  1983年   1篇
  1982年   4篇
  1981年   2篇
  1978年   3篇
  1977年   1篇
  1975年   2篇
  1973年   1篇
  1969年   1篇
  1967年   1篇
排序方式: 共有553条查询结果,搜索用时 31 毫秒
481.
Carbohydrates, as carriers, providing numerous attachment points for the conjugation of peptide antigens and their optimal orientation for the recognition by cells of the immune system, reducing degradation of the attached peptide antigens and many other advantages make carbohydrate-based vaccine highly promising approach. Multiple copies of a single group A streptococcal (GAS) M protein derived specific peptide antigens (J8 or J14) were coupled onto carbohydrate cores (D-glucose and D-galactose) linked to lipophilic amino acids to produce a self-adjuvanting liposaccharide vaccine against GAS strains. In vivo experiments showed high serum IgG antibody titers against each of the incorporated peptide epitopes, J8 or J14.  相似文献   
482.
A novel series of P1 modified HIV protease inhibitors was synthesized and evaluated for in vitro antiviral activity against wild-type virus and protease inhibitor-resistant viruses. Optimization of the P1 moiety resulted in compounds with femtomolar enzyme activities and cellular antiviral activities in the low nanomolar range culminating in the identification of clinical candidate GW0385.  相似文献   
483.
A broad range of proteins bind high-mannose carbohydrates found on the surface of the envelope protein gp120 of the human immunodeficiency virus and thus interfere with the viral life cycle, providing a potential new way of controlling HIV infection. These proteins interact with the carbohydrate moieties in different ways. A group of them interacts as typical C-type lectins via a Ca2+ ion. Another group interacts with specific single, terminal sugars, without the help of a metal cation. A third group is involved in more intimate interactions, with multiple carbohydrate rings and no metal ion. Finally, there is a group of lectins for which the interaction mode has not yet been elucidated. This review summarizes, principally from a structural point of view, the current state of knowledge about these high-mannose binding proteins and their mode of sugar binding.  相似文献   
484.
Peptide immunotherapy both activates and suppresses the T cell response against known peptide Ags. Although pretreatment with VP2(121-130) peptide inhibits the development of antiviral CTL specific for the immunodominant D(b):VP2(121-130) epitope expressed during acute Theiler's murine encephalomyelitis virus infection, i.v. injection of this same peptide or MHC tetramers containing the peptide during an ongoing antiviral CTL response results in a peptide-induced fatal syndrome (PIFS) within 48 h. Susceptibility to PIFS is dependent on peptide-specific CD8(+) T cells, varies among inbred strains of mice, and is not mediated by traditionally defined mechanisms of shock. Analyses using bone marrow chimeras and mutant mice demonstrate that susceptibility to PIFS is determined by the genotype of bone marrow-derived cells and requires the expression of perforin. Animals responding to peptide treatment with PIFS develop classical stress responses in the brain. These findings raise important considerations for the development of peptide therapies for active diseases to modify immune responses involving expanded populations of T cells. In summary, treatment with peptides or MHC-tetramers during a peptide-specific immune response can result in a fatal shock-like syndrome. Susceptibility to the syndrome is genetically determined, is mediated by CD8(+) T cells, and requires expression of perforin. These findings raise concerns about the use of peptides and MHC tetramers in therapeutic schemes.  相似文献   
485.
Cyanovirin-N (CV-N) is a potent 11 kDa HIV-inactivating protein that binds with high affinity to the HIV surface envelope protein gp120. A double mutant P51S/S52P of CV-N was engineered by swapping two critical hinge-region residues Pro51 and Ser52. This mutant has biochemical and biophysical characteristics equivalent to the wild-type CV-N and its structure resembles that of wild-type CV-N. However, the mutant shows a different orientation in the hinge region that connects two domains of the protein. The observation that this double mutant crystallizes under a wide variety of conditions challenges some of the current hypotheses on domain swapping and on the role of hinge-region proline residues in domain orientation. The current structure contributes to the understanding of domain swapping in cyanovirins, permitting rational design of domain-swapped CV-N mutants.  相似文献   
486.
Two candidate human orthologs of Escherichia coli MutM/Nei were recently identified in the human genome database, and one of these, NEH1, was characterized earlier (Hazra, T. K., Izumi, T., Boldogh, I., Imhoff, B., Kow, Y. W., Jaruga, P., and Dizdaroglu, M. (2002) Proc. Natl. Acad. Sci. U. S. A. 99, 3523-3528). Here we report characterization of the second protein, originally named NEH2 and now renamed NEIL2 (Nei-like). The 37-kDa wild-type NEIL2 expressed in and purified from E. coli has DNA glycosylase/AP lyase activity, primarily for excising oxidative products of cytosine, with highest activity for 5-hydroxyuracil, one of the most abundant and mutagenic lesions induced by reactive oxygen species, and with lower activity for 5,6-dihydrouracil and 5-hydroxycytosine. It has negligible or undetectable activity with 8-oxoguanine, thymine glycol, 2-hydroxyadenine, hypoxanthine, and xanthine. NEIL2 is similar to NEIL1 in having N-terminal Pro as the active site. However, unlike NEIL1, its expression was independent of the cell cycle stage in fibroblasts, and its highest expression was observed in the testes and skeletal muscle. Despite the absence of a putative nuclear localization signal, NEIL2 was predominantly localized in the nucleus. These results suggest that NEIL2 is involved in global genome repair mainly for removing oxidative products of cytosine.  相似文献   
487.
The crystal structure of the semireduced form of cyclic nucleotide phosphodiesterase (CPDase) from Arabidopsis thaliana has been solved by molecular replacement and refined at the resolution of 1.8 A. We have previously reported the crystal structure of the native form of this enzyme, whose main target is ADP-ribose 1",2"-cyclic phosphate, a product of the tRNA splicing reaction. CPDase possesses six cysteine residues, four of which are involved in forming two intra-molecular disulfide bridges. One of these bridges, between Cys-104 and Cys-110, is opened in the semireduced CPDase, whereas the other remains intact. This change of the redox state leads to a conformational rearrangement in the loop covering the active site of the protein. While the native structure shows this partially disordered loop in a coil conformation, in the semireduced enzyme the N-terminal lobe of this loop winds up and elongates the preceding alpha-helix. The semireduced state of CPDase also enabled co-crystallization with a putative inhibitor of its enzymatic activity, 2',3'-cyclic uridine vanadate. The ligand is bound within the active site, and the mode of binding is in agreement with the previously proposed enzymatic mechanism. Selected biophysical properties of the oxidized and the semireduced CPDase are also discussed.  相似文献   
488.
Intestinal epithelial cell function is compromised by local immune and inflammatory responses. In this study, we examined the possibility that intestinal epithelial cell injury occurs in the presence of activated inflammatory cells, such as neutrophils and macrophages, via production of reactive oxygen species (ROS). Following exposure to 50–150 μM H2O2, levels of mRNA and protein for Fas and, to a lesser degree, Fas-L were increased and intestinal epithelial cells underwent apoptosis. Treatment of H2O2-exposed cells with agonistic anti-Fas antibody, but not isotype control antibody, significantly enhanced apoptosis. Apoptosis was associated with the activation of caspase 8, while Z-IETD, an inhibitor of caspase 8, blocked apoptosis of H2O2-exposed intestinal epithelial cells. Thus, ROS induced Fas and Fas-L expression in association with intestinal epithelial cell apoptosis. These data support the hypothesis that, following exposure to oxidative stress, enterocytes are primed for cell death via Fas-mediated pathways.  相似文献   
489.
GABAergic interneurons can phase the output of principal cells, giving rise to oscillatory activity in different frequency bands. Here we describe a new subtype of GABAergic interneuron, the multipolar bursting (MB) cell in the mouse neocortex. MB cells are parvalbumin positive but differ from fast-spiking multipolar (FS) cells in their morphological, neurochemical, and physiological properties. MB cells are reciprocally connected with layer 2/3 pyramidal cells and are coupled with each other by chemical and electrical synapses. MB cells innervate FS cells but not vice versa. MB to MB cell as well as MB to pyramidal cell synapses exhibit paired-pulse facilitation. Carbachol selectively induced synchronized theta frequency oscillations in MB cells. Synchrony required both gap junction coupling and GABAergic chemical transmission, but not excitatory glutamatergic input. Hence, MB cells form a distinct inhibitory network, which upon cholinergic drive can generate rhythmic and synchronous theta frequency activity, providing temporal coordination of pyramidal cell output.  相似文献   
490.
The actin-driven process of cytoplasmic streaming in plant cells is widely believed to be the earliest documented example of cytoskeleton-driven organelle movement. In the decades since these seminal findings, two mechanisms of actin-based intracellular movement have been identified in multiple cell types: one is myosin dependent and the other is dependent upon the Arp2/3 complex for actin nucleation and polymerization. Here, we describe mechanisms of force generation and directed movement that use the actin cytoskeleton, as well as those that target actin-dependent force generators to different subcellular compartments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号