首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   372篇
  免费   45篇
  2022年   3篇
  2021年   3篇
  2020年   3篇
  2019年   3篇
  2018年   6篇
  2017年   2篇
  2016年   8篇
  2015年   10篇
  2014年   18篇
  2013年   15篇
  2012年   21篇
  2011年   12篇
  2010年   14篇
  2009年   9篇
  2008年   17篇
  2007年   17篇
  2006年   20篇
  2005年   18篇
  2004年   19篇
  2003年   11篇
  2002年   13篇
  2001年   11篇
  2000年   12篇
  1999年   15篇
  1998年   9篇
  1995年   8篇
  1994年   5篇
  1992年   6篇
  1991年   9篇
  1990年   7篇
  1989年   10篇
  1988年   8篇
  1987年   8篇
  1986年   2篇
  1985年   5篇
  1984年   4篇
  1983年   2篇
  1981年   3篇
  1980年   5篇
  1979年   3篇
  1978年   4篇
  1976年   2篇
  1975年   5篇
  1974年   2篇
  1973年   5篇
  1972年   3篇
  1971年   5篇
  1969年   2篇
  1968年   2篇
  1925年   3篇
排序方式: 共有417条查询结果,搜索用时 15 毫秒
51.
Human papillomavirus 16 is a causative agent of most cases of cervical cancer and has also been implicated in the development of some head and neck cancers. The early viral E6 gene codes for two alternatively spliced isoforms, E6large and E6*. We have previously demonstrated the differential effects of E6large and E6* binding on the expression and stability of procaspase 8, a key mediator of the apoptotic pathway. Additionally, we have reported that E6 binds to the FADD death effector domain (DED) at a novel E6 binding domain. Sequence similarities between the FADD and procaspase 8 DEDs suggested a specific region for E6large/procaspase 8 binding, which was subsequently confirmed by mutational analysis as well as by the ability of peptides capable of blocking E6/FADD binding to also block E6large/caspase 8 binding. However, the binding of the smaller isoform, E6*, to procaspase 8 occurs at a different region, as deletion and point mutations that disrupt E6large/caspase 8 DED binding do not disrupt E6*/caspase 8 DED binding. In addition, peptide inhibitors that can block E6large/procaspase 8 binding do not affect the binding of E6* to procaspase 8. These results demonstrate that the residues that mediate E6*/procaspase 8 DED binding localize to a different region on the protein and employ a separate binding motif. This provides a molecular explanation for our initial findings that the two E6 isoforms affect procaspase 8 stability in an opposing manner.The relationship between viruses and cancers is reflected in the observation that viral infections account for approximately 10 to 15% of the cancer burden worldwide (6, 60). This makes viral infections one of the preventable risk factors of cancer. Viruses are associated with several human malignancies, including hepatitis B and C virus-associated hepatocellular carcinomas (48), Epstein-Barr virus-associated nasopharyngeal carcinomas and lymphomas (36), and human T-cell leukemia virus-associated adult T-cell leukemia (8, 28). Although there is a correlation between infection and the onset of cancer, the frequency of infection supersedes the incidence of cancer inception, suggesting that the presence of the virus alone is not sufficient to trigger carcinogenesis. Progression from viral infection to tumor development therefore requires additional environmental and cellular factors in addition to the expression and activity of virus-encoded proteins (40).High-risk strains of human papillomavirus (HPV) (high-risk HPV [HR-HPV]) such as HPV16 and HPV18 have been implicated in most cases of cervical cancer and also in a subset of head and neck cancers (24, 26, 39). Infection with oncogenic strains of HPV represents up to 75% of all infections. Furthermore, 1/10 of all deaths among women worldwide can be attributed to HR-HPV-related cancers (44, 45). The key players in promoting cell transformation and immortalization following HPV infection are the viral early proteins E6 and E7. These proteins are well known for their ability to interact with the tumor suppressor p53 or members of the retinoblastoma family of proteins including pRb, p107, and p130, respectively (3, 17, 41). In addition to p53, HR-HPV E6 (HR-E6) binds to a number of cellular proteins involved in various aspects of cell proliferation and virus survival (reviewed in references 34 and 53). Our laboratory has reported that E6 binds to key mediators of the apoptotic pathway including tumor necrosis factor (TNF) R1 (22), the FADD death effector domain (DED) (21), and the procaspase 8 DED (20) and, in doing so, impedes apoptosis from taking place.As noted above, HR-E6 binds to TNF R1, blocking the adaptor molecule TRADD from binding to the membrane receptor. Similarly, the binding of HR-E6 to the FADD DED, a molecule common to the TNF-, Fas L-, and TRAIL-mediated extrinsic pathways of apoptosis, leads to the accelerated degradation of FADD and thereby inhibits the binding of additional downstream molecules necessary for programmed cell death. Additionally, we have reported that HR-E6 binds to procaspase 8, another molecule common to all three receptor-mediated pathways. The importance of procaspase 8 can be demonstrated by the many proteins produced by viruses to either inactivate or inhibit this apoptotic mediator in order to evade clearance by the host immune response. Such proteins include the herpes simplex virus R1 subunit that interferes with caspase 8 activation (31); the molluscum contagiosum virus MC159 protein that binds to the DEDs of both FADD and procaspase 8, thereby inhibiting their interaction (25); the human herpesvirus 8 FLICE protein that obstructs procaspase 8 cleavage and prevents its activation (4); and the cowpox virus serpin CrmA, which, along with the human cytomegalovirus UL136 proteins, inhibits caspase 8 activation (50, 56). In a like manner, HR-HPV16 produces the early protein E6 that binds to procaspase 8. Interestingly, however, we have found that the two splice products of the E6 gene, E6large, a protein of about 16 kDa, and E6*, a protein less than half the size of E6large, bind to and affect procaspase 8 stability differentially. While the large isoform accelerates the degradation of procaspase 8, leading to its destabilization, the short isoform leads to the stabilization of protein expression and an increase in activity. These observations suggest that the bindings of these two E6 isoforms have different functional consequences and may well localize to different regions on procaspase 8.We have previously identified a novel E6 binding site on the FADD DED (54). Based on sequence comparisons between the DEDs of FADD and procaspase 8, we proposed that the binding motif that mediates oncoprotein binding to both proteins would be similar. To test this possibility, we performed a series of mutational and peptide competitor-based experiments and discovered that the motifs on caspase 8 and on FADD that mediate binding between E6 and its cellular partner are indeed similar. Interestingly, however, the motif by which E6* binds to procaspase 8 is located in another region of the protein. These findings provide a molecular explanation for our previously reported observations concerning the differential effects of the binding of each isoform to the procaspase 8 DED. These findings also demonstrate the ability of peptide inhibitors to successfully impair E6 binding to its cellular targets and contribute to the discovery of therapeutic agents that are effective against cervical cancer.  相似文献   
52.
53.
The study of ion channel function is constrained by the availability of structures for only a small number of channels. A commonly used bioinformatics technique is to assert, based on sequence similarity, that a domain within a channel of interest has the same structure as a reference domain for which the structure is known. This technique, while useful, is often employed when there is only a slight similarity between the channel of interest and the domain of known structure. In this study, we exploit recent advances in structural genomics to calculate the sequence-based probability of the presence of putative domains in a number of ion channels. We find strong support for the presence of many domains that have been proposed in the literature. For example, eukaryotic and prokaryotic CLC proteins almost certainly share a common structure. A number of proposed domains, however, are not as well supported. In particular, for the COOH terminus of the BK channel we find a number of literature proposed domains for which the assertion of common structure based on common sequence has a nontrivial probability of error.  相似文献   
54.
Three cDNA clones coding for Medicago sativa Rop GTPases have been isolated. The represented genes could be assigned to various linkage groups by genetic mapping. They were expressed in all investigated plant organs, although at different level. Relative gene expression patterns in response to Sinorhizobium infection of roots as well as during somatic embryogenesis indicated their differential participation in these processes. DNA sequences coding for altogether six different Medicago sp. Rop GTPases could be identified in sequence databases. Based on their homology to each other and to their Arabidopsis counterparts, a unified nomenclature is suggested for Medicago Rop GTPases.  相似文献   
55.
In autoimmune (type 1) diabetes, autoreactive lymphocytes destroy pancreatic β-cells responsible for insulin synthesis. To assess the feasibility of gene therapy for type 1 diabetes, recombinant vaccinia virus (rVV) vectors were constructed expressing pancreatic islet autoantigens proinsulin (INS) and a 55-kDa immunogenic peptide from glutamic acid decarboxylase (GAD), and the immunomodulatory cytokine interleukin (IL)-10. To augment the beneficial effects of recombinant virus therapy, the INS and GAD genes were fused to the C terminus of the cholera toxin B subunit (CTB). Five-week-old non-obese diabetic (NOD) mice were injected once with rVV. Humoral antibody immune responses and hyperglycemia in the infected mice were analyzed. Only 20% of the mice inoculated with rVV expressing the CTB::INS fusion protein developed hyperglycemia, in comparison to 70% of the mice in the uninoculated animal group. Islets from pancreatic tissues isolated from euglycemic mice from this animal group showed no sign of inflammatory lymphocyte invasion. Inoculation with rVV producing CTB::GAD or IL-10 was somewhat less effective in reducing diabetes. Humoral antibody isotypes of hyperglycemic and euglycemic mice from all treated groups possessed similar IgG1/IgG2c antibody titer ratios from 19 to 32 wk after virus inoculation. In comparison with uninoculated mice, 11-wk-old NOD mice injected with virus expressing CTB::INS were delayed in diabetes onset by more than 4 wk. The experimental results demonstrate the feasibility of using rVV expressing CTB::INS fusion protein to generate significant protection and therapy against type 1 diabetes onset and progression.  相似文献   
56.
The foodborne bacterial pathogen, Campylobacter jejuni, possesses an N-linked protein glycosylation (pgl) pathway involved in adding conserved heptasaccharides to asparagine-containing motifs of >60 proteins, and releasing the same glycan into its periplasm as free oligosaccharides. In this study, comparative genomics of all 30 fully sequenced Campylobacter taxa revealed conserved pgl gene clusters in all but one species. Structural, phylogenetic and immunological studies showed that the N-glycosylation systems can be divided into two major groups. Group I includes all thermotolerant taxa, capable of growth at the higher body temperatures of birds, and produce the C. jejuni-like glycans. Within group I, the niche-adapted C. lari subgroup contain the smallest genomes among the epsilonproteobacteria, and are unable to glucosylate their pgl pathway glycans potentially reminiscent of the glucosyltransferase regression observed in the O-glycosylation system of Neisseria species. The nonthermotolerant Campylobacters, which inhabit a variety of hosts and niches, comprise group II and produce an unexpected diversity of N-glycan structures varying in length and composition. This includes the human gut commensal, C. hominis, which produces at least four different N-glycan structures, akin to the surface carbohydrate diversity observed in the well-studied commensal, Bacteroides. Both group I and II glycans are immunogenic and cell surface exposed, making these structures attractive targets for vaccine design and diagnostics.In eukaryotes, glycosylated proteins are ubiquitous components of extracellular matrices and cellular surfaces. Their oligosaccharide moieties are implicated in a wide variety of essential cell-cell and cell-matrix processes ranging from immune recognition to cancer development. The first general protein glycosylation (pgl)1 pathway was discovered in the epsilonproteobacterium Campylobacter jejuni (1). The organism transfers a conserved heptasaccharide en bloc to asparagine residues within the sequon D/E- X1-N-X2-S/T (X1, X2 ≠ P) of >60 glycoproteins (24). Furthermore, the pathway can be functionally transferred into Escherichia coli, and the oligosaccharyltransferase (OTase), PglB, is capable of adding foreign sugars to acceptor proteins (57). C. jejuni PglB also possesses hydrolase activity, influenced by the cellular growth phase and osmotic environment, releasing free oligosaccharides (fOS) into the periplasmic space in a 10:1 ratio relative to the amount of heptasaccharide N-linked to protein (8, 9).The C. jejuni N-linked heptasaccharide is conserved in structure in both C. jejuni and C. coli, the two most commonly isolated pathogenic Campylobacter species and major causes of human enteritis worldwide (10, 11). All campylobacters, but one, possess conserved pgl genes required for N-linked protein glycosylation ((12) and this study). This post-translational modification in C. jejuni influences DNA uptake, chicken and mouse colonization, epithelial cell adherence and invasion, recognition by human sera, and binding to the macrophage galactose lectin (MGL) receptor on dendritic cells (2, 1317). Several Campylobacter species have now been recognized as emerging pathogens and causative agents of human gastroenteritis (e.g. C. upsaliensis and C. hyointestinalis), gingivitis, periodontitis, and human abortions (e.g. C. rectus, C. concisus, C. gracilis, C. showae, and C. upsaliensis) and inflammatory bowel disease in children (e.g. C. concisus) (18). Other species cause venereal disease and infertility in cattle (C. fetus subsp. venerealis; Cfv) or abortions in sheep (C. fetus subsp. fetus; Cff) (19).In this study, we used phylogenetic, immunological, structural and glycoproteomic studies to compare the N-glycosylation systems of 29 Campylobacter species and identified unexpected variations. Thus, although the pathway is a common feature within this genus, variability in the N-glycans and fOS at the species level suggests that each species possess a unique array of glycosyltransferases, which correlate with their phylogenetic relatedness.  相似文献   
57.
The aim of this work is to report the preliminary results of the Hungarian multicentric randomised DCIS study. Between 2000 and 2007, 278 patients with ductal carcinoma in situ (DCIS) treated by breast-conserving surgery were randomised according to predetermined risk groups. Low/intermediate-risk patients (n=29) were randomised to 50 Gy whole-breast irradiation (WBI) or observation. High-risk cases (n=235) were allocated to receive 50 Gy WBI vs. 50 Gy WBI plus 16 Gy tumour bed boost. Very high-risk patients (patients with involved surgical margins; n=14) were randomised to 50 Gy WBI plus 16 Gy tumour bed boost or reoperation (reexcision plus radiotherapy or mastectomy alone). Immunohistochemistry (IHC) was performed to detect the expression of potential molecular prognostic markers (ER, PR, Her2, p53, Bcl-2 and Ki-67). At a median follow-up of 36 months no recurrence was observed in the low/intermediate- and very high-risk patient groups. In the high-risk group, 4 (1.7%) local recurrences and 1 (0.4%) distant metastasis occurred. No patient died of breast cancer. In the high-risk group of patients, the 3- and 5-year probability of local recurrence was 1.1% and 3.1%, respectively. The positive immunostaining for Her2 (38%), p53 (37%) and Ki-67 (44%) correlated with a high nuclear grade. Significant inverse correlation was found between the expression of ER (77%), PR (67%), Bcl-2 (64%) and grade. Preliminary results suggest that breast-conserving surgery followed by radiotherapy yields an annual local recurrence rate of less than 1% in patients with DCIS. IHC of molecular prognostic markers can assist to gain insight into the biologic heterogeneity of DCIS.  相似文献   
58.
59.
Direct capillary zone electrophoretic methods were developed for the separation of the enantiomers of unnatural beta-methyl-amino acids such as erythro- and threo-beta-methylphenylalanine, beta-methyltyrosine, beta-methyltryptophan and beta-methyl-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid. Capillary zone electrophoresis was carried out using sulfopropylated-alpha-CD (SP2-alpha-CD), sulfopropylated-beta-CD (SP2-beta-CD) both with a degree of substitution of 2 moles/mole cyclodextrin, and sulfopropylated-beta-CD (SP4-beta-CD) with a degree of substitution of 4moles/mole beta-cyclodextrin. The effects of selector and buffer concentrations, electrolyte pH and applied voltage were studied on the separation efficiency. Varying the electrophoretic conditions with application of 20 kV, hydrodynamic injection, unmodified silica capillary, three different buffers (borate, phosphate and acetate) and modified cyclodextrins as chiral selectors all compounds investigated are nearly baseline resolved. The elution sequence was determined in most cases.  相似文献   
60.
The crystal structure of the S189D+A226G rat chymotrypsin-B mutant has been determined at 2.2 angstroms resolution. This mutant is the most trypsin-like mutant so far in the line of chymotrypsin-to-trypsin conversions, aiming for a more complete understanding of the structural basis of substrate specificity in pancreatic serine proteases. A226G caused significant rearrangements relative to S189D chymotrypsin, allowing an internal conformation of Asp189 which is close to that in trypsin. Serious distortions remain, however, in the activation domain, including zymogen-like features. The pH-profile of activity suggests that the conformation of the S1-site of the mutant is influenced also by the P1 residue of the substrate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号