首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   373篇
  免费   45篇
  2022年   4篇
  2021年   3篇
  2020年   3篇
  2019年   3篇
  2018年   6篇
  2017年   2篇
  2016年   8篇
  2015年   10篇
  2014年   18篇
  2013年   15篇
  2012年   21篇
  2011年   12篇
  2010年   14篇
  2009年   9篇
  2008年   17篇
  2007年   17篇
  2006年   20篇
  2005年   18篇
  2004年   19篇
  2003年   11篇
  2002年   13篇
  2001年   11篇
  2000年   12篇
  1999年   15篇
  1998年   9篇
  1995年   8篇
  1994年   5篇
  1992年   6篇
  1991年   9篇
  1990年   7篇
  1989年   10篇
  1988年   8篇
  1987年   8篇
  1986年   2篇
  1985年   5篇
  1984年   4篇
  1983年   2篇
  1981年   3篇
  1980年   5篇
  1979年   3篇
  1978年   4篇
  1976年   2篇
  1975年   5篇
  1974年   2篇
  1973年   5篇
  1972年   3篇
  1971年   5篇
  1969年   2篇
  1968年   2篇
  1925年   3篇
排序方式: 共有418条查询结果,搜索用时 15 毫秒
151.
Alanine-glyoxylate aminotransferase is a peroxisomal enzyme, of which various missense mutations lead to irreversible kidney damage via primary hyperoxaluria type 1, in part caused by improper peroxisomal targeting. To unravel the molecular mechanism of its recognition by the peroxisomal receptor Pex5p, we have determined the crystal structure of the respective cargo-receptor complex. It shows an extensive protein/protein interface, with contributions from residues of the peroxisomal targeting signal 1 and additional loops of the C-terminal domain of the cargo. Sequence segments that are crucial for receptor recognition and hydrophobic core interactions within alanine-glyoxylate aminotransferase are overlapping, explaining why receptor recognition highly depends on a properly folded protein. We subsequently characterized several enzyme variants in vitro and in vivo and show that even minor protein fold perturbations are sufficient to impair Pex5p receptor recognition. We discuss how the knowledge of the molecular parameters for alanine-glyoxylate aminotransferase required for peroxisomal translocation could become useful for improved hyperoxaluria type 1 treatment.  相似文献   
152.
153.
The goal of the Human Microbiome Project (HMP) is to generate a comprehensive catalog of human-associated microorganisms including reference genomes representing the most common species. Toward this goal, the HMP has characterized the microbial communities at 18 body habitats in a cohort of over 200 healthy volunteers using 16S rRNA gene (16S) sequencing and has generated nearly 1,000 reference genomes from human-associated microorganisms. To determine how well current reference genome collections capture the diversity observed among the healthy microbiome and to guide isolation and future sequencing of microbiome members, we compared the HMP's 16S data sets to several reference 16S collections to create a 'most wanted' list of taxa for sequencing. Our analysis revealed that the diversity of commonly occurring taxa within the HMP cohort microbiome is relatively modest, few novel taxa are represented by these OTUs and many common taxa among HMP volunteers recur across different populations of healthy humans. Taken together, these results suggest that it should be possible to perform whole-genome sequencing on a large fraction of the human microbiome, including the 'most wanted', and that these sequences should serve to support microbiome studies across multiple cohorts. Also, in stark contrast to other taxa, the 'most wanted' organisms are poorly represented among culture collections suggesting that novel culture- and single-cell-based methods will be required to isolate these organisms for sequencing.  相似文献   
154.
The effect of ions on the thermostability and unfolding of Na,K-ATPase from shark salt gland was studied and compared with that of Na,K-ATPase from pig kidney by using differential scanning calorimetry (DSC) and activity assays. In 1 mM histidine at pH 7, the shark enzyme inactivates rapidly at 20 °C, as does the kidney enzyme at 42 °C (but not at 20 °C). Increasing ionic strength by addition of 20 mM histidine, or of 1 mM NaCl or KCl, protects both enzymes against this rapid inactivation. As detected by DSC, the shark enzyme undergoes thermal unfolding at lower temperature (Tm ≈ 45 °C) than does the kidney enzyme (Tm ≈ 55 °C). Both calorimetric endotherms indicate multi-step unfolding, probably associated with different cooperative domains. Whereas the overall heat of unfolding is similar for the kidney enzyme in either 1 mM or 20 mM histidine, components with high mid-point temperatures are lost from the unfolding transition of the shark enzyme in 1 mM histidine, relative to that in 20 mM histidine. This is attributed to partial unfolding of the enzyme due to a high hydrostatic pressure during centrifugation of DSC samples at low ionic strength, which correlates with inactivation measurements. Addition of 10 mM NaCl to shark enzyme in 1 mM histidine protects against inactivation during centrifugation of the DSC sample, but incubation for 1 h at 20 °C prior to addition of NaCl results in loss of components with lower mid-point temperatures within the unfolding transition. Cations at millimolar concentration therefore afford at least two distinct modes of stabilization, likely affecting separate cooperative domains. The different thermal stabilities and denaturation temperatures of the two Na,K-ATPases correlate with the respective physiological temperatures, and may be attributed to the different lipid environments.  相似文献   
155.
Ghrelin (G-HH) synthesized in several tissues including salivary and stomach glands stimulates appetite in humans by modulating neuropeptide Y neurons in the hypothalamic arcuate nucleus. Loss of appetite is one of the most important symptoms of stomach cancer. We conducted a study using immunohistochemistry to determine whether salivary glands and stomach cancer tissues produce ghrelin. We determined that negative ghrelin immunohistochemistry discriminates tumors from normal tissues and may therefore further our understanding of the clinically important problem of reduced food intake and anorexia in cancer patients. Radioimmunoassay analyses confirmed that cancer cells do not produce a G-HH peptide, whereas normal cells yield this peptide.  相似文献   
156.
Our aim was to estimate the frequency and characteristics ofmethicillin-resistant Staphylococcus aureus (MRSA) strains occurring in a Romanian teaching hospital. We retrospectively studied isolates from infected or colonized patients treated at the intensive care and surgical units during January 2004-December 2005. The antibiotic susceptibility of MRSA strains and the presence of mecA gene were determined. Consecutively occurring strains isolated through a three-month period were typed using pulsed field gel electrophoresis. A total of 423 S. aureus strains were identified, methicillin-resistance was detected in 211 (49.9%) strains. Most of them were multiresistant. One of the MRSA genotypes identified by PFGE was commonly recovered from patients treated in the intensive care unit. According to our results, MRSA strains were frequently isolated pathogens in our hospital and there is an urgent need to enhance infection control efforts.  相似文献   
157.
158.
159.
Overexpression of recombinant Fc fusion proteins in Escherichia coli frequently results in the production of inclusion bodies that are subsequently used to produce fully functional protein by an in vitro refolding process. During the refolding step, misfolded proteins such as disulfide scrambled forms can be formed, and purification steps are used to remove these product-related impurities to produce highly purified therapeutic proteins. A variety of analytical methods are commonly used to monitor protein variants throughout the purification process. Capillary electrophoresis (CE)-based techniques are gaining popularity for such applications. In this work, we used a nonreduced capillary electrophoresis–sodium dodecyl sulfate (nrCE–SDS) method for the analysis of disulfide scrambled forms in a fusion protein. Under denatured nonreduced conditions, an extra post-shoulder peak was observed at all purification steps. Detailed characterization revealed that the peak was related to the disulfide scrambled forms and was isobaric with the correctly folded product. In addition, when sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS–PAGE) was used during the CE–SDS peak characterization, we observed that the migration order of scrambled forms is reversed on CE–SDS versus SDS–PAGE. This illustrates the importance of establishing proper correlation of these two techniques when they are used interchangeably to guide the purification process and to characterize proteins.  相似文献   
160.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号