首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   339篇
  免费   47篇
  2021年   3篇
  2020年   3篇
  2019年   3篇
  2018年   6篇
  2016年   7篇
  2015年   8篇
  2014年   12篇
  2013年   13篇
  2012年   20篇
  2011年   12篇
  2010年   14篇
  2009年   8篇
  2008年   16篇
  2007年   18篇
  2006年   19篇
  2005年   16篇
  2004年   19篇
  2003年   10篇
  2002年   12篇
  2001年   11篇
  2000年   12篇
  1999年   12篇
  1998年   6篇
  1995年   7篇
  1994年   5篇
  1992年   6篇
  1991年   9篇
  1990年   6篇
  1989年   9篇
  1988年   8篇
  1987年   6篇
  1986年   2篇
  1985年   4篇
  1984年   4篇
  1983年   2篇
  1982年   2篇
  1981年   3篇
  1980年   5篇
  1979年   3篇
  1978年   4篇
  1977年   3篇
  1976年   2篇
  1975年   5篇
  1974年   2篇
  1973年   5篇
  1972年   2篇
  1971年   3篇
  1969年   2篇
  1968年   2篇
  1925年   3篇
排序方式: 共有386条查询结果,搜索用时 15 毫秒
101.
Accumulating evidence has indicated the involvement of glutamatergic neurotransmission in the pathophysiology of excitotoxicity and in the mechanism of action of antidepressants. We have previously shown that tricyclic desipramine and the selective serotonin reuptake inhibitor fluoxetine inhibit NMDA receptors (NMDARs) in the clinically relevant, low micromolar concentration range. As the different subtypes of NMDARs are markedly different in their physiological and pathological functions, our aim was to investigate whether the effect of antidepressants is subtype-specific. Using whole-cell patch-clamp recordings in rat cortical cell cultures, we studied the age-dependence of inhibition of NMDA-induced currents after treatment with desipramine and fluoxetine, as the expression profile of the NMDAR subtypes changes as a function of days in vitro. We also investigated the inhibitory effect of these antidepressants on NMDA-induced currents in HEK 293 cell lines that stably expressed rat recombinant NMDARs with GluN1a/GluN2A or GluN1a/GluN2B subunit compositions. The inhibitory effect of desipramine was not age-dependent, whereas fluoxetine displayed a continuously decreasing inhibitory profile, which was similar to the GluN1/GluN2B subtype-selective antagonist ifenprodil. In HEK 293 cells, desipramine equally inhibited NMDA currents in both cell lines, whereas fluoxetine showed an inhibitory effect only in cells that expressed the GluN1/GluN2B subtype. Our data show that fluoxetine is a selective inhibitor of GluN2B-containing NMDARs, whereas desipramine inhibits both GluN1/GluN2A and GluN1/GluN2B subtypes. As the clinical efficacy of these drugs is very similar, the putative NMDAR-associated therapeutic effect of antidepressants may be mediated only via inhibition of the GluN2B-containing subtype. The manifestation of the GluN1/GluN2B-selectivity of fluoxetine suggests the neuroprotective potential for this drug in both acute and chronic neurodegenerative disorders.  相似文献   
102.
Wagner W  Fodor E  Ginsburg A  Hammer JA 《Biochemistry》2006,45(38):11564-11577
The myosin Va light chain DYNLL2 has been proposed to function as an adaptor to link the myosin to certain cargo. Here, we mapped the binding site for DYNLL2 within the myosin Va heavy chain. Copurification and pull-down experiments showed that the heavy chain contains a single DYNLL2 binding site and that this site resides within a discontinuity in the myosin's central coiled-coil domain. Importantly, exon B, an alternatively spliced, three-amino acid exon, is a part of this binding site, and we show in the context of full-length myosin Va that this exon is required for DYNLL2-myosin Va interaction. We investigated the effect of DYNLL2 binding on the structure of a myosin Va heavy chain fragment that contains the DYNLL2 binding site and flanking sequence, only parts of which are strongly predicted to form a coiled coil. Circular dichroism measurements revealed a DYNLL2-induced change in the secondary structure of this dimeric myosin fragment that is consistent with an increase in alpha-helical coiled-coil content. Moreover, the binding of DYNLL2 considerably stabilizes this heavy chain fragment against thermal denaturation. Analytical ultracentrifugation yielded an apparent association constant of approximately 3 x 10(6) M(-1) for the interaction of DYNLL2 with the dimeric myosin fragment. Together, these data show that alternative splicing of the myosin Va heavy chain controls DYNLL2-myosin Va interaction and that DYNLL2 binding alters the structure of a portion of the myosin's coiled-coil domain. These results suggest that exon B could have a significant impact on the conformation and regulatory folding of native myosin Va, as well as on its interaction with certain cargos.  相似文献   
103.
When planning a survey of 16S rRNA genes from a complex environment, investigators face many choices including which primers to use and how to taxonomically classify sequences. In this study, we explored how these choices affected a survey of microbial diversity in a sample taken from the aerobic basin of the activated sludge of a North Carolina wastewater treatment plant. We performed pyrosequencing reactions on PCR products generated from primers targeting the V1-V2, V6, and V6-V7 variable regions of the 16S rRNA gene. We compared these sequences to 16S rRNA gene sequences found in a whole-genome shotgun pyrosequencing run performed on the same sample. We found that sequences generated from primers targeting the V1-V2 variable region had the best match to the whole-genome shotgun reaction across a range of taxonomic classifications from phylum to family. Pronounced differences between primer sets, however, occurred in the “rare biosphere” involving taxa that we observed in fewer than 11 sequences. We also examined the results of analysis strategies comparing a classification scheme using a nearest-neighbor approach to directly classifying sequences with a naïve Bayesian algorithm. Again, we observed pronounced differences between these analysis schemes in infrequently observed taxa. We conclude that if a study is meant to probe the rare biosphere, both the experimental conditions and analysis choices will have a profound impact on the observed results.For nearly 3 decades, investigations of the distribution of microbes in complex environments have focused on the use of rRNA genes (1, 2, 4, 11, 16, 18, 19, 22, 24). Because the full-length 16S rRNA sequence can be obtained with paired-end reads via traditional Sanger sequencing, until recently most studies of the 16S rRNA gene captured most or nearly most of the 16S sequence length. New pyrosequencing technologies, however, have recently been introduced that greatly reduce the per base cost of sequencing but with shorter read lengths than traditional Sanger sequencing (17). This new approach has proven powerful, yielding a previously unobtainable view of rare taxa (7, 12-14, 25).The shorter reads produced by pyrosequencing require the choice of a particular region of the 16S rRNA gene to target for pyrosequencing as well as the choice of an algorithm to classify the taxonomy of the shorter reads. In their initial surveys of microbial diversity with pyrosequencing (12, 14, 25), Sogin and colleagues targeted the V6 variable region, in part because it is was small enough to be captured with the 100-bp reads of the pyrosequencing technology available at the time. Recently, the read length of 454 pyrosequencing machines has been increased to an average of ∼250 bp. This allows for more flexibility in primer design and opens up the possibility of targeting regions of the 16S rRNA gene other than V6. In recent work, Huse et al. took advantage of this new capability to compare the classifications made for the human gut microbiome with the V6 and longer V3 regions (13). Plotting the taxonomic abundance of these two sequence sets against each other yielded an excellent correlation (r2 = 0.99), suggesting that the choice of which variable region to target makes little difference. In this report, we introduce a data set examining the performance of sets of primers targeting the V1-V2, V6, and V6-V7 regions. By using a sample for which we have also generated a whole-genome shotgun sequencing run with 250 bp reads, we were able to compare the observed 16S rRNA genes in samples with and without an initial PCR step targeting the 16S rRNA gene. Our results demonstrate that experimental choices such as which region of the 16S rRNA gene to sequence and which algorithm to use to classify taxa are much more likely to affect observations of the “rare biosphere” than more commonly observed taxa.  相似文献   
104.
Francisella tularensis is a highly infectious zoonotic agent causing the disease tularemia. The common hamster (Cricetus cricetus) is considered a pest in eastern Europe, and believed to be a source of human tularemia infections. We examined the role of the common hamster in the natural cycle of tularemia using serologic methods on 900 hamsters and real-time polymerase chain reaction (PCR) on 100 hamsters in an endemic agricultural area. We collected 374 Ixodes acuminatus ticks from the hamsters and tested them by real-time PCR. All tests were negative. To examine clinical signs, pathology, and histopathology of acute tularemia infection similar to the natural infection, two hamsters were infected with a large dose of a wild strain of F. tularensis ssp. holarctica. After a short period of apathy, the animals died on the eighth and ninth days postinfection. The pathologic, histopathologic, and immunohistochemical examination contributed to the diagnosis of septicemia in both cases. Our results confirmed previous findings that common hamsters are highly sensitive to F. tularensis. We conclude that although septicemic hamsters may pose substantial risk to humans during tularemia outbreaks, hamsters in interepizootic periods do not act as a main reservoir of F. tularensis.  相似文献   
105.
As a comparison to a similar study on Photorhabdus strains, 15 Xenorhabdus bacterial strains and secondary phenotypic variants of two strains were screened for proteolytic activity by five detection methods. Although the number and intensity of proteolytic activities were different, every strain was positive for proteolytic activity by several tests. Zymography following native PAGE detected two groups of activities with different substrate affinities and a higher and lower electrophoretic mobility that were distinguished as activity 1 and 2, respectively. Zymography following SDS-PAGE resolved three activities, which were provisionally named proteases A, B, and C. Only protease B, an ∼55-kDa enzyme, was produced by every strain. This enzyme exhibited higher affinity to the gelatin substrate than to the casein substrate. Of the chromogenic substrates used, three were hydrolyzed: furylacryloyl-Ala-Leu-Val-Tyr (Fua-ALVY), Fua-LGPA (LGPA is Leu-Gly-Pro-Ala) (a substrate for collagen peptidases), and succinyl-Ala-Ala-Pro-Phe-thiobenzyl (Succ-AAPF-SBzl). All but the Fua-LGPA-ase activity seemed to be from secreted enzymes. According to their substrate preference profiles and inhibitor sensitivities, at least six such proteolytic enzymes could be distinguished in the culture medium of Xenorhabdus strains. The proteolytic enzyme that was secreted the earliest, protease B and the Succ-AAPF-SBzl-hydrolyzing enzyme, appeared from the early logarithmic phase of growth. Protease B could also be detected in the hemolymph of Xenorhabdus-infected Galleria mellonella larvae from 15 h postinfection. The purified protease B hydrolyzed in vitro seven proteins in the hemolymph of Manduca sexta that were also cleaved by PrtA peptidase from Photorhabdus. The N-terminal sequence of protease B showed similarity to a 55-kDa serralysin type metalloprotease in Xenorhabdus nematophila, which had been identified as an orthologue of Photorhabdus PrtA peptidase.Xenorhabdus and Photorhabdus bacteria are highly virulent, fatal pathogens for insects. Phylogenetically, they are sister genera in the family Enterobacteriaceae (3, 4). There are some differences between Xenorhabdus and Photorhabdus in their biology (e.g., light production), and they also differ in their interaction with their symbiotic nematode partners, which are in the Steinernematidae and Heterorhabditidae genera, respectively (8, 9). At the same time, they also have several properties in common. For example, due to their similar strategy of infection, their entrance into the hemocoel is absolutely dependent on the invasion of insects by their symbiotic nematode partners. An interesting feature of both genera is that they have two phenotypic (form) variants, primary and secondary (9). The primary form is natural, while the secondary form can be observed (generated) mostly in the laboratory. They differ in, for example, antibiotic production, outer membrane proteins, and cell surface structures (fimbriae and flagellae [23], symbiotic capabilities with nematode partners, and exoenzyme production [9]). The secondary form variants were found, with nonbiochemical detection methods, to produce less or no proteolytic activity compared to the primary phenotypic variants (see references 9 and 23 and references therein). The high pathogenicity makes Xenorhabdus and Photorhabdus good model organisms of infection, which can be exploited—by studying the function of their virulence factors—for the investigation of the immune system of insects and the mechanisms the pathogens use to cope with the immune defense of hosts. The comparative analysis of these bacterial partners provides an opportunity to study the question of how similar the infection mechanisms can be at the molecular level of two evolutionarily different insect pathogen bacterium-nematode complexes that, at the same time, have similar infection strategies.Of the virulence factors, we have been interested in secreted proteases that may be used by the pathogens during the first stage of infection in the penetration of the tissues of host or in the suppression of its immune response. The secretion and biochemistry of these enzymes are better studied in Photorhabdus, where four secreted proteases could be detected in a screen of 20 strains by a combination of five methods (15). The earliest secreted Photorhabdus protease is PrtA peptidase, a metzincin in the M10B family of serralysins. The others are PhpC (Photorhabdus protease C), which belongs to the M4 metallopeptidase family of thermolysin-like proteases, OpdA, a collagen peptidase in the family of thimet oligopeptidases and PhpD, a furylacryloyl-Ala-Leu-Val-Tyr (Fua-ALVY)-cleaving enzyme, the identity of which is still unknown. In contrast, although a number of Xenorhabdus strains were tested for proteolytic activity with simple bacteriological plate assays (2, 25), only one (Xenorhabdus nematophila) was investigated by a biochemical detection method of protease activities, zymography. Two activities have been found by this method, and one of these activities has been partially characterized (5).As an approach to establish the similarity between Xenorhabdus and Photorhabdus in the mechanism of infection regarding the type and role of proteolytic enzymes, we investigated 15 Xenorhabdus strains for the secretion of proteases employing the same five detection methods that we had previously used for Photorhabdus strains. Two of the strains (Xenorhabdus nematophila AN6 and Xenorhabdus cabanillassii RIO-HU) were represented with their phenotypic variant pairs.  相似文献   
106.
The protein Pex19p functions as a receptor and chaperone of peroxisomal membrane proteins (PMPs). The crystal structure of the folded C‐terminal part of the receptor reveals a globular domain that displays a bundle of three long helices in an antiparallel arrangement. Complementary functional experiments, using a range of truncated Pex19p constructs, show that the structured α‐helical domain binds PMP‐targeting signal (mPTS) sequences with about 10 μM affinity. Removal of a conserved N‐terminal helical segment from the mPTS recognition domain impairs the ability for mPTS binding, indicating that it forms part of the mPTS‐binding site. Pex19p variants with mutations in the same sequence segment abolish correct cargo import. Our data indicate a divided N‐terminal and C‐terminal structural arrangement in Pex19p, which is reminiscent of a similar division in the Pex5p receptor, to allow separation of cargo‐targeting signal recognition and additional functions.  相似文献   
107.
BACKGROUND: Interferons (IFNs) play an important role in host antiviral responses, but viruses, including vaccinia viruses (VV), employ mechanisms to disrupt IFN activities, and these viral mechanisms are often associated with their virulence. Here, we explore an attenuation strategy with a vaccine strain of VV lacking a virus-encoded IFN-gamma receptor homolog (viroceptor). METHODS: To facilitate the monitoring of virus properties, first we constructed a Lister vaccine strain derivative VV-RG expressing optical reporters. Further, we constructed a VV-RG derivative, VV-RG8, which lacks the IFN-gammaR viroceptor (B8R gene product). Replication, immunological and pathogenic properties of the constructed strains were compared. RESULTS: Viruses did not show significant differences in humoral and cellular immune responses of immune-competent mice. Replication of constructed viruses was efficient both in vitro and in vivo, but showed marked difference in kinetics of propagation. In cultured CV-1 epithelial cells, the VV-RG8 strain retained the propagation potential of the parental virus, while, in the C6 glial cells, significant delay was observed in the kinetics of the VV-RG8 replication cycle compared to VV-RG. The pathogenesis of the viruses was tested by survival assay and biodistribution in nude mice. High dose inoculation of nude mice with VV-RG8 caused less pronounced virus dissemination, improved weight gain, and increased survival rate, as compared with the VV-RG strain. CONCLUSIONS: The replication-competent virus VV-RG8 carrying a mutation at the B8R gene is less pathogenic for mice than the parental vaccine virus. We anticipate that step-wise inactivation of VV vaccine genes involved in evasion of host immune response may provide an alternative approach for generation of hyper-attenuated replication-competent vaccines.  相似文献   
108.
109.
We have developed an elimination test to identify chromosomal regions that contain tumor inhibitory genes. Monochromosomal human/mouse microcell hybrids are generated and passaged through SCID mice. Derived tumors are then analyzed for deletions on the transgenomic chromosome. Using this strategy, we have previously identified a 1.6-cM common eliminated region 1 (CER1) on human 3p21. 3. We now report that CER1 contains 14 markers that are deleted in 19 SCID-derived tumors. A 1-Mb PAC contig that spans CER1 was assembled. Five chemokine receptor genes (CCR1, CCR3, CCR2, CCR5, and CCR6) were localized in CER1 in a 225-kb cluster. The lactotransferrin gene (LTF, or lactoferrin, LF), which reportedly has tumor inhibitory activity, also maps to CER1. Our results create a basis for characterization and further functional testing of genes within CER1.  相似文献   
110.
Photorhabdus is an insect-pathogenic bacterium in which oral toxicity to insects is found in two distinct taxonomic groups. Using a DNA microarray and comparative genomics, we show that oral toxicity is associated with toxin complex genes tcaABC and that this locus can be mobilized or deleted within different strains.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号