首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   121篇
  免费   22篇
  143篇
  2022年   2篇
  2019年   1篇
  2017年   1篇
  2015年   3篇
  2014年   4篇
  2013年   5篇
  2012年   2篇
  2011年   2篇
  2010年   5篇
  2009年   6篇
  2008年   6篇
  2007年   6篇
  2006年   5篇
  2005年   6篇
  2004年   5篇
  2003年   6篇
  2002年   3篇
  2001年   6篇
  2000年   8篇
  1999年   2篇
  1998年   1篇
  1997年   2篇
  1994年   3篇
  1993年   2篇
  1992年   5篇
  1991年   7篇
  1990年   2篇
  1989年   1篇
  1987年   2篇
  1986年   2篇
  1985年   3篇
  1984年   2篇
  1983年   1篇
  1982年   3篇
  1981年   1篇
  1980年   1篇
  1979年   3篇
  1978年   2篇
  1977年   1篇
  1976年   3篇
  1975年   2篇
  1974年   1篇
  1973年   2篇
  1971年   3篇
  1970年   2篇
  1969年   1篇
  1965年   1篇
排序方式: 共有143条查询结果,搜索用时 0 毫秒
71.
Protein sequences encode both structure and foldability. Whereas the interrelationship of sequence and structure has been extensively investigated, the origins of folding efficiency are enigmatic. We demonstrate that the folding of proinsulin requires a flexible N-terminal hydrophobic residue that is dispensable for the structure, activity, and stability of the mature hormone. This residue (PheB1 in placental mammals) is variably positioned within crystal structures and exhibits 1H NMR motional narrowing in solution. Despite such flexibility, its deletion impaired insulin chain combination and led in cell culture to formation of non-native disulfide isomers with impaired secretion of the variant proinsulin. Cellular folding and secretion were maintained by hydrophobic substitutions at B1 but markedly perturbed by polar or charged side chains. We propose that, during folding, a hydrophobic side chain at B1 anchors transient long-range interactions by a flexible N-terminal arm (residues B1–B8) to mediate kinetic or thermodynamic partitioning among disulfide intermediates. Evidence for the overall contribution of the arm to folding was obtained by alanine scanning mutagenesis. Together, our findings demonstrate that efficient folding of proinsulin requires N-terminal sequences that are dispensable in the native state. Such arm-dependent folding can be abrogated by mutations associated with β-cell dysfunction and neonatal diabetes mellitus.  相似文献   
72.
Congenital hypothyroidism with biallelic thyroglobulin (Tg protein, encoded by the TG gene) mutation is an endoplasmic reticulum (ER) storage disease. Many patients (and animal models) grow an enlarged thyroid (goiter), yet some do not. In adulthood, hypothyroid TGcog/cog mice (bearing a Tg-L2263P mutation) exhibit a large goiter, whereas adult WIC rats bearing the TGrdw/rdw mutation (Tg-G2298R) exhibit a hypoplastic thyroid. Homozygous TG mutation has been linked to thyroid cell death, and cytotoxicity of the Tg-G2298R protein was previously thought to explain the lack of goiter in WIC-TGrdw/rdw rats. However, recent studies revealed that TGcog/cog mice also exhibit widespread ER stress–mediated thyrocyte death, yet under continuous feedback stimulation, thyroid cells proliferate in excess of their demise. Here, to examine the relative proteotoxicity of the Tg-G2298R protein, we have used CRISPR–CRISPR-associated protein 9 technology to generate homozygous TGrdw/rdw knock-in mice in a strain background identical to that of TGcog/cog mice. TGrdw/rdw mice exhibit similar phenotypes of defective Tg protein folding, thyroid histological abnormalities, hypothyroidism, and growth retardation. TGrdw/rdw mice do not show evidence of greater ER stress response or stress-mediated cell death than TGcog/cog mice, and both mouse models exhibit sustained thyrocyte proliferation, with comparable goiter growth. In contrast, in WIC-TGrdw/rdw rats, as a function of aging, the thyrocyte proliferation rate declines precipitously. We conclude that the mutant Tg-G2298R protein is not intrinsically more proteotoxic than Tg-L2263P; rather, aging-dependent difference in maintenance of cell proliferation is the limiting factor, which accounts for the absence of goiter in adult WIC-TGrdw/rdw rats.  相似文献   
73.
In mutant INS gene–induced diabetes of youth (MIDY), characterized by insulin deficiency, MIDY proinsulin mutants misfold and fail to exit the endoplasmic reticulum (ER). Moreover, these mutants bind and block ER exit of wild-type (WT) proinsulin, inhibiting insulin production. The ultimate fate of ER-entrapped MIDY mutants is unclear, but previous studies implicated ER-associated degradation (ERAD), a pathway that retrotranslocates misfolded ER proteins to the cytosol for proteasomal degradation. Here we establish key ERAD machinery components used to triage the Akita proinsulin mutant, including the Hrd1-Sel1L membrane complex, which conducts Akita proinsulin from the ER lumen to the cytosol, and the p97 ATPase, which couples the cytosolic arrival of proinsulin with its proteasomal degradation. Surprisingly, we find that protein disulfide isomerase (PDI), the major protein oxidase of the ER lumen, engages Akita proinsulin in a novel way, reducing proinsulin disulfide bonds and priming the Akita protein for ERAD. Efficient PDI engagement of Akita proinsulin appears linked to the availability of Hrd1, suggesting that retrotranslocation is coordinated on the lumenal side of the ER membrane. We believe that, in principle, this form of diabetes could be alleviated by enhancing the targeting of MIDY mutants for ERAD to restore WT insulin production.  相似文献   
74.
The production of phosphatidic acid plays a crucial role in the activation of the ERK cascade. This role was linked to the binding of phosphatidate to a specific polybasic site within the kinase domain of Raf-1. Here we show that phosphatidate promotes ERK phosphorylation in intact cells but does not activate Raf in vitro. The kinase suppressor of Ras (KSR) contains a sequence homologous to the phosphatidate binding site of Raf-1. Direct binding of phosphatidate to synthetic peptides derived from the sequences of the binding domains of Raf-1 and KSR was demonstrated by spectroscopic techniques. The specificity of these interactions was confirmed using synthetic lipids and mutated peptides in which the core of the phosphatidic acid binding domain was disrupted. Insulin and exogenous dioleoyl phosphatidate induced a rapid translocation of a mouse KSR1-EGFP construct to the plasma membrane of HIRcB cells. Mutation of two arginines located in the core of the putative phosphatidate binding site abolished dioleoyl phosphatidate- and insulin-induced translocation of KSR1. Overexpression of the mutant KSR1 in HIRcB cells inhibited insulin-dependent MEK and ERK phosphorylation. The addition of dioleoyl phosphatidate or insulin increased the co-localization of KSR1 and H-Ras and promoted the formation of plasma membrane patches enriched in both proteins and phosphatidic acid. These results, in conjunction with our previous work, suggest the formation of phosphatidate-enriched membrane microdomains that contain all components of the ERK cascade. We propose that these domains act as molecular scaffolds in the coupling of signaling events.  相似文献   
75.
Protein folding in the endoplasmic reticulum (ER) is error prone, and ER quality control (ERQC) processes ensure that only correctly folded proteins are exported from the ER. Glycoproteins can be retained in the ER by ERQC, and this retention contributes to multiple human diseases, termed ER storage diseases. UDP-glucose:glycoprotein glucosyltransferase (UGGT1) acts as a central component of glycoprotein ERQC, monoglucosylating deglucosylated N-glycans of incompletely folded glycoproteins and promoting subsequent reassociation with the lectin-like chaperones calreticulin and calnexin. The extent to which UGGT1 influences glycoprotein folding, however, has only been investigated for a few selected substrates. Using mouse embryonic fibroblasts lacking UGGT1 or those with UGGT1 complementation, we investigated the effect of monoglucosylation on the soluble/insoluble distribution of two misfolded α1-antitrypsin (AAT) variants responsible for AAT deficiency disease: null Hong Kong (NHK) and Z allele. Whereas substrate solubility increases directly with the number of N-linked glycosylation sites, our results indicate that additional solubility is conferred by UGGT1 enzymatic activity. Monoglucosylation-dependent solubility decreases both BiP association with NHK and unfolded protein response activation, and the solubility increase is blocked in cells deficient for calreticulin. These results suggest that UGGT1-dependent monoglucosylation of N-linked glycoproteins promotes substrate solubility in the ER.  相似文献   
76.
Analysis of arylsulfatase A from pseudo arylsulfatase A deficiency fibroblasts by sodium dodecyl sulfate polyacrylamide gel electrophoresis and immunoradiochemical nitrocellulose blot radiography revealed two subunit bands which migrated faster than subunit bands of enzyme from normal fibroblasts. Immunoreactive material was present only at levels comparable to enzyme activity. These findings imply that arylsulfatase A in pseudodeficiency is structurally altered, but it is catalytically equivalent to normal arylsulfatase A. This altered enzyme must be the product of the pseudodeficiency gene since no immunoreactive product of the metachromatic leukodystrophy gene could be detected in metachromatic leukodystrophy cells by the procedure employed. It is not clear from the present data if the attenuated arylsulfatase A activity in pseudodeficiency results from a decreased rate of synthesis or an increased lability of the mutant enzyme.  相似文献   
77.
The hydrolysis of UDP-N-acetylgalactosamine-4-sulfate by human arylsulfatase B has been demonstrated with an enzyme preparation purified 200-fold from placenta. No hydrolysis was observed with arylsulfatase A. UDP-N-acetylgalactosamine-4-sulfate is the first fully characterized physiological compound shown to be a substrate for arylsulfatase B, confirming that arylsulfatase B is an N-acetylgalactosamine-4-sulfate sulfohydrolase. Cultured fibroblasts derived from patients with Maroteaux-Lamy syndrome were deficient in UDP-N-acetylgalactosamine-4-sulfate sulfohydrolase to the same extent that they were deficient in arylsulfatase B.  相似文献   
78.
—Glial cells were cultured from brain tissue obtained at autopsy of a patient with Sanfilippo A syndrome. Mucopolysaccharides were labeled by culturing the cells in the presence of [35S]sulfate. After proteolysis, intracellular and media-elaborated mucopolysaccharides were fractionated by Dowex 1 chromatography. One fraction, identified as heparan sulfate by chromatographic, electrophoretic, and enzyme susceptibility properties, accumulated in Sanfilippo glial cells in greater amounts than in controls. Heparan sulfate was also excreted into the culture media by both Sanfilippo and normal cultures, and it constituted a major fraction of the sulfated mucopolysaccharides synthesized by glial cells. Sanfilippo and normal fibroblasts were also included in these studies for comparative purposes. Sanfilippo fibroblasts accumulated significantly increased amounts of heparan sulfate as compared to normal fibroblasts. Heparan sulfate was excreted into the culture media by Sanfilippo and normal fibroblasts in equivalent amounts, but in contrast to glial cells, it was only a minor component of the sulfated mucopolysaccharides produced. Cultured glial cells should provide a useful system for investigating the role of heparan sulfate in glial cell function.  相似文献   
79.
The possible presence of ATP-driven H+ translocase activity in isolated rat parotid secretory granules has been examined by several approaches. First the transmembrane pH difference measured by either [14C] methylamine or [3H]acetate distribution is not substantially affected by ATP in the presence of membrane-permeating anions. Second, despite a low intrinsic H+ permeability of parotid granule membranes, only a small variably detectable inside-positive transmembrane potential is observed (by altered distribution of radioactive ions) when ATP is added in the absence of permeant anions. Third, ATP-induced lysis of parotid granules is minor and appears to be independent of ATP hydrolysis. Finally, ATP-hydrolase activity of the parotid granule fraction is not stimulated by an H+ ionophore, nor is it susceptible to inhibition by 7-chloro-4-nitrobenz-2-oxa-1,3-diazole at a concentration which decreases the measured ATPase of purified chromaffin granule membranes by more than 80%. These findings suggest that this exocrine secretory granule type, which is characterized by storage of a heterogeneous mixture of secretory proteins, exhibits H+ pump activity which is at most a small fraction of that observed in biogenic amine storage granules of neural and endocrine tissues.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号