首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   80篇
  免费   1篇
  81篇
  2022年   1篇
  2020年   3篇
  2019年   3篇
  2017年   1篇
  2016年   6篇
  2015年   3篇
  2014年   4篇
  2013年   4篇
  2012年   6篇
  2011年   9篇
  2010年   4篇
  2009年   6篇
  2008年   4篇
  2007年   5篇
  2006年   2篇
  2005年   6篇
  2004年   2篇
  2003年   3篇
  2002年   1篇
  1996年   1篇
  1995年   1篇
  1992年   1篇
  1989年   1篇
  1988年   1篇
  1968年   1篇
  1965年   1篇
  1964年   1篇
排序方式: 共有81条查询结果,搜索用时 15 毫秒
71.
The combinatorial repertoire of AgRs is established through somatic recombination of V, D, and J gene segments during lymphocyte development. Incorporation of D segments into IgH, TCRbeta, and TCRdelta chains also contributes to junctional diversification by substantially extending the length of the third CDR. The V, D, and J gene segments are flanked by recombination signals (RS) of 12- or 23-mer spacer length that direct recombination according to the 12/23 rule. D genes in the TCRbeta and TCRdelta loci are flanked by a 12RS and 23RS, and their incorporation is controlled by mechanisms "beyond the 12/23 rule." In the TCRbeta locus, selective interactions between Rag proteins and the RS flanking the V-D and D-J genes, respectively, are sufficient to enforce D gene usage. In this article, we report that in the TCRdelta locus, the Rag proteins are not the major determinant of D gene incorporation. In developing mouse and human thymocytes, the two Ddelta genes rearrange predominantly to form D-D coding joints. In contrast, when tested in ex vivo transfection assays in a nonlymphoid cell line, the flanking RS mediate deletion, rather than incorporation, of the two D genes on both exogenous recombination substrates and the endogenous locus. These results suggest that selective Rag-RS interactions are not the sole regulators of D gene segment incorporation, and additional, perhaps lymphocyte-specific, mechanisms exist that allow proper shaping of the primary AgR repertoire.  相似文献   
72.
73.

Introduction  

Oxygen is a critical parameter proposed to modulate the functions of chondrocytes ex-vivo as well as in damaged joints. This article investigates the effect of low (more physiological) oxygen percentage on the biosynthetic and catabolic activity of human articular chondrocytes (HAC) at different phases of in vitro culture.  相似文献   
74.

Introduction  

Endothelin-1, a vasoconstrictor peptide, influences cartilage metabolism mainly via endothelin receptor type A (ETA). Along with the inflammatory nonapeptide vasodilator bradykinin (BK), which acts via bradykinin receptor B1 (BKB1) in chronic inflammatory conditions, these vasoactive factors potentiate joint pain and inflammation. We describe a preclinical study of the efficacy of treatment of surgically induced osteoarthritis with ETA and/or BKB1 specific peptide antagonists. We hypothesize that antagonism of both receptors will diminish osteoarthritis progress and articular nociception in a synergistic manner.  相似文献   
75.
A series of 13 compounds having a monoindolizine mono-salt skeleton was designed and synthesised in order to evaluate their antimycobacterial activity. The synthesis is efficient, involving only three steps: two alkylations and one 3?+?2 dipolar cycloaddition. The antimicrobial activity against Mycobacterium tuberculosis H37Rv grown under aerobic conditions was evaluated, eight compounds showing a very good antimycobacterial activity. SAR correlation reveals a certain influence of the R substituent from the para position of benzoyl moiety at position 3 of indolizine. The most active five compounds passed the second stage of anti-TB testing, the assay demonstrating that they are potent against both replicating and non-replicating Mtb, have a bactericidal mechanism of action, are active against drug-resistant Mtb strains, present a moderate to good activity against nontuberculous mycobacteria, a good intracellular activity, and a moderate to high cytotoxicity. For one compound showing a promising anti-TB profile, a complete ADMET study has been performed.  相似文献   
76.
77.
78.
Haemolysis is usually episodic in glucose-6-phosphate dehydrogenase (G6PD) deficiency, often triggered by a period of oxidative stress. In the present work, we investigate a possible biochemical mechanism underlying the enhanced susceptibility of G6PD deficient red blood cells (RBC) to oxidative stress. We analysed eight male subjects with Mediterranean glucose-6P-dehydrogenase deficiency (G6PDd), class II, for their ability in phosphorylating erythrocyte membrane band 3 following oxidative and osmotic stress. Our findings show that this sensitivity is connected to an early membrane band 3 Tyr-phosphorylation in the presence of diamide. However, since both Syk, and Lyn kinases, and SHP-2 phosphatase, mostly implicated in the band 3 P-Tyr level regulation, are alike in content and activity in normal and patient erythrocytes, an alteration in the membrane organization is likely the cause of the anomalous response to the oxidant. We report, in fact, that hypertonic-induced morphological change in G6PDd erythrocyte induces a higher membrane band 3 Tyr-phosphorylation, suggesting a pre-existing membrane alteration, likely due to the chronic lowering of the redox systems in patients. We also report that 1-chloro-2,4-dinitrobenzene-pre-treatment of normal red cells can alter the normal protein-protein and protein-membrane interaction under hypertonic rather than oxidative stress, thus partially resembling the response in patients, and that RBC may utilize a wider range of redox defence, under oxidative conditions, including, but not exclusively, NADPH and glutathione. On the whole, these results would encourage a different approach to the evaluation of the effects of pharmacological administration to patients, giving more attention to the possible drug-induced membrane alteration evidenced by the abnormal band 3 Tyr-phosphorylation.  相似文献   
79.
Abstract

The aim of this study was to investigate the extent of heavy metal (HM) pollution and its effect on microorganisms from rhizosphere soil in Baia Mare area (Maramure? County, Romania). Two sites with different contamination degrees were included in the study: one with a long history of mining activities and one within a drinking water safeguard zone. Rhizosphere soil samples were characterized with respect to physico-chemical parameters and the Cd, Cu, Pb and Zn contents. Native bacteria were investigated for HM tolerance and biofilm formation under toxic exposure by the microdilution assay. The most resistant strains were identified and the minimum inhibitory concentrations for HMs were determined. Cd, Cu, Pb and Zn exceeded the intervention threshold in Bozânta tailings site, while Pb content exceeded the intervention level within the area of the drinking water treatment plant. Cd showed a very high potential ecological risk in Bozânta area. The long-term exposure to HMs contributed to the selection of HM-tolerant and weakly adherent strains. Biofouling was significantly reduced under the influence of copper ions. Arthrobacter, Rhodococcus and Acidovorax strains with exceptional resistant profiles were isolated from the tailings site, indicating the important role of native microorganisms in rhizosphere ecosystems of contaminated sites.  相似文献   
80.
A new and exciting biosensing avenue based on assessment of the non-monotonous, concentration dependent effect of pore formation is discussed. A novel kinetic model is advanced to relate surface plasmon resonance (SPR) data with actual concentrations of interacting partners. Lipid modified L1 sensor chip provide the accessible platform for SPR exploration of peptide–membrane interaction, with POPC and melittin as model systems. We show that quantitative assessment of the interaction between an antimicrobial peptide and lipid modified sensors is capable to provide both sensing avenues and detailed mechanistic insights into effects of pore-forming compounds. The proposed model combined with appropriate design of the experimental protocol adds a new depth to the classic SPR investigation of peptide–lipid interaction offering a quantitative platform for detection, improved understanding of the manifold facets of the interaction and for supporting the controlled design of novel antimicrobial compounds. This biosensing approach can be applied to an entire set of pore-forming compounds including antimicrobial peptides and exo-toxins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号