首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3872篇
  免费   295篇
  4167篇
  2023年   37篇
  2022年   78篇
  2021年   155篇
  2020年   82篇
  2019年   100篇
  2018年   118篇
  2017年   99篇
  2016年   140篇
  2015年   246篇
  2014年   260篇
  2013年   272篇
  2012年   444篇
  2011年   359篇
  2010年   211篇
  2009年   178篇
  2008年   260篇
  2007年   243篇
  2006年   172篇
  2005年   152篇
  2004年   112篇
  2003年   108篇
  2002年   86篇
  2001年   19篇
  2000年   12篇
  1999年   21篇
  1998年   15篇
  1997年   7篇
  1996年   6篇
  1995年   4篇
  1993年   9篇
  1992年   9篇
  1991年   5篇
  1990年   4篇
  1987年   4篇
  1986年   5篇
  1981年   4篇
  1980年   5篇
  1976年   6篇
  1969年   4篇
  1968年   3篇
  1965年   4篇
  1964年   9篇
  1963年   5篇
  1962年   4篇
  1961年   8篇
  1958年   3篇
  1957年   5篇
  1956年   4篇
  1952年   3篇
  1929年   3篇
排序方式: 共有4167条查询结果,搜索用时 0 毫秒
791.
Chinese Hamster Ovary [CHO] cells are the workhorse for production of modern biopharmaceuticals. They are however immortalized cells with a high propensity for genetic change. Judging from published culture records, CHO cell populations have undergone hundreds of population doublings since their origin in the late 1950s. Different cell populations were established and named from 1 to 3 decades after their generation, such as CHO-Pro–, CHO-K1, CHO-DG44, CHO-S, CHO-DUK, CHO-DXB-11 to indicate origin and certain phenotypic features. These names are commonly used in scientific publications still today. This article discusses the relevance of such names. We argue that they provide a false sense of identity. To substantiate this, we provide the long (and poorly recorded) history of CHO cells as well as their highly complex genetics. Finally, we suggest an alternative naming system for CHO cells which provides more relevant information. While the implementation of a new naming convention will require substantial discussions among members of the relevant community, it should improve interpretation and comparability between laboratories. This, in turn will help scientific communities and industrial users to attain and further the full potential of CHO cells.  相似文献   
792.
Vanucizumab is a novel bispecific antibody inhibiting vascular endothelial growth factor (VEGF-A) and angiopoietin-2 (Ang-2) that demonstrated safety and anti-tumor activity in part I of a phase I study of 42 patients with advanced solid tumors. Part II evaluated the pharmacodynamic effects of vanucizumab 30 or 15 mg/kg every 2 weeks in 32 patients. Serial plasma samples, paired tumor, and skin-wound-healing biopsies were taken over 29 days to evaluate angiogenic markers. Vanucizumab was associated with marked post-infusion reductions in circulating unbound VEGF-A and Ang-2. By day 29, tumor samples revealed mean reductions in density of microvessels (−32.2%), proliferating vessels (−47.9%) and Ang-2 positive vessels (−62.5%). Skin biopsies showed a mean reduction in density of microvessels (−49.0%) and proliferating vessels (−25.7%). Gene expression profiling of tumor samples implied recruitment and potential activation of lymphocytes. Biopsies were safely conducted. Vanucizumab demonstrated a consistent biological effect on vascular-related biomarkers, confirming proof of concept. Skin-wound-healing biopsies were a valuable surrogate for studying angiogenesis-related mechanisms.  相似文献   
793.
794.
The transport of auxin controls the rate, direction and localization of plant growth and development. The course of auxin transport is defined by the polar subcellular localization of the PIN proteins, a family of auxin efflux transporters. However, little is known about the composition and regulation of the PIN protein complex. Here, using blue‐native PAGE and quantitative mass spectrometry, we identify native PIN core transport units as homo‐ and heteromers assembled from PIN1, PIN2, PIN3, PIN4 and PIN7 subunits only. Furthermore, we show that endogenous flavonols stabilize PIN dimers to regulate auxin efflux in the same way as does the auxin transport inhibitor 1‐naphthylphthalamic acid (NPA). This inhibitory mechanism is counteracted both by the natural auxin indole‐3‐acetic acid and by phosphomimetic amino acids introduced into the PIN1 cytoplasmic domain. Our results lend mechanistic insights into an endogenous control mechanism which regulates PIN function and opens the way for a deeper understanding of the protein environment and regulation of the polar auxin transport complex.  相似文献   
795.
Methanol is the simplest of all alcohols, is universally distributed in anoxic sediments as a result of plant material decomposition and is constantly attracting attention as an interesting substrate for anaerobes like acetogens that can convert bio-renewable methanol into value-added chemicals. A major drawback in the development of environmentally friendly but economically attractive biotechnological processes is the present lack of information on biochemistry and bioenergetics during methanol conversion in these bacteria. The mesophilic acetogen Eubacterium callanderi KIST612 is naturally able to consume methanol and produce acetate as well as butyrate. To grasp the full potential of methanol-based production of chemicals, we analysed the genes and enzymes involved in methanol conversion to acetate and identified the redox carriers involved. We will display a complete model for methanol-derived acetogenesis and butyrogenesis in Eubacterium callanderi KIST612, tracing the electron transfer routes and shed light on the bioenergetics during the process.  相似文献   
796.
The external tissues of numerous eukaryote species show repeated colour patterns, usually characterized by units that are present at least twice on the body. These dotted, striped or more complex phenotypes carry out crucial biological functions, such as partner recognition, aposematism or camouflage. Very diverse mechanisms explaining the formation of repeated colour patterns in eukaryotes have been identified and described, and it is timely to review this field from an evolutionary and developmental biology perspective. We propose a novel classification consisting of seven families of primary mechanisms: Turing(-like), cellular automaton, multi-induction, physical cracking, random, neuromuscular and printing. In addition, we report six pattern modifiers, acting synergistically with these primary mechanisms to enhance the spectrum of repeated colour patterns. We discuss the limitations of our classification in light of currently unexplored extant diversity. As repeated colour patterns require both the production of a repetitive structure and colouration, we also discuss the nature of the links between these two processes. A more complete understanding of the formation of repeated colour patterns in eukaryotes will require (i) a deeper exploration of biological diversity, tackling the issue of pattern elaboration during the development of non-model taxa, and (ii) exploring some of the most promising ways to discover new families of mechanisms. Good starting points include evaluating the role of mechanisms known to produce non-repeated colour patterns and that of mechanisms responsible for repeated spatial patterns lacking colouration.  相似文献   
797.
798.
799.
800.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号