首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3745篇
  免费   298篇
  4043篇
  2024年   3篇
  2023年   37篇
  2022年   78篇
  2021年   155篇
  2020年   82篇
  2019年   100篇
  2018年   119篇
  2017年   99篇
  2016年   140篇
  2015年   245篇
  2014年   261篇
  2013年   268篇
  2012年   443篇
  2011年   359篇
  2010年   208篇
  2009年   178篇
  2008年   249篇
  2007年   232篇
  2006年   167篇
  2005年   151篇
  2004年   112篇
  2003年   106篇
  2002年   85篇
  2001年   22篇
  2000年   15篇
  1999年   26篇
  1998年   15篇
  1997年   7篇
  1996年   5篇
  1995年   4篇
  1994年   6篇
  1993年   8篇
  1992年   6篇
  1991年   2篇
  1990年   4篇
  1988年   2篇
  1987年   2篇
  1986年   3篇
  1983年   6篇
  1981年   2篇
  1977年   2篇
  1976年   3篇
  1974年   2篇
  1969年   3篇
  1966年   5篇
  1960年   1篇
  1955年   1篇
  1934年   1篇
  1933年   2篇
  1932年   1篇
排序方式: 共有4043条查询结果,搜索用时 15 毫秒
51.
A SNF2-like protein facilitates dynamic control of DNA methylation   总被引:7,自引:0,他引:7  
DRD1 is a SNF2-like protein previously identified in a screen for mutants defective in RNA-directed DNA methylation of a seed promoter in Arabidopsis. Although the initial study established a role for DRD1 in RNA-directed DNA methylation, it did not address whether DRD1 is needed for de novo or maintenance methylation, or whether it is required for methylation of other target sequences. We show here that DRD1 is essential for RNA-directed de novo methylation and acts on different target promoters. In addition, an unanticipated role for DRD1 in erasure of CG methylation was shown when investigating maintenance methylation after segregating away the silencing trigger. DRD1 is unique among known SNF2-like proteins in facilitating not only de novo methylation of target sequences in response to RNA signals, but also loss of methylation when the silencing inducer is withdrawn. The opposing roles of DRD1 could contribute to the dynamic regulation of DNA methylation.  相似文献   
52.
The orientation of the mitotic spindle plays a key role in determining whether a polarized cell will divide symmetrically or asymmetrically. In most cell types, cytoplasmic dynein plays a critical role in spindle orientation. However, how dynein directs opposite spindle poles toward distinct and predetermined cell ends is poorly understood. Here, we show that dynein distributes preferentially to the spindle pole bodies (SPB) and astral microtubules (MTs) proximal to the bud in metaphase yeast cells. Dynein asymmetry depended on the bud neck kinases Elm1, Hsl1, and Gin4, on the spindle pole components Cnm67 and Cdk1, and on the B-type cyclins Clb1 and Clb2. Furthermore, phenotypic and genetic studies both indicated that dynein is unable to orient the spindle when it localizes to both poles and associated microtubules. Together, our data indicate that proper orientation of the spindle requires dynein to act on a single spindle pole.  相似文献   
53.
The anode/electrolyte interface behavior, and by extension, the overall cell performance of sodium-ion batteries is determined by a complex interaction of processes that occur at all components of the electrochemical cell across a wide range of size- and timescales. Single-scale studies may provide incomplete insights, as they cannot capture the full picture of this complex and intertwined behavior. Broad, multiscale studies are essential to elucidate these processes. Within this perspectives article, several analytical and theoretical techniques are introduced, and described how they can be combined to provide a more complete and comprehensive understanding of sodium-ion battery (SIB) performance throughout its lifetime, with a special focus on the interfaces of hard carbon anodes. These methods target various length- and time scales, ranging from micro to nano, from cell level to atomistic structures, and account for a broad spectrum of physical and (electro)chemical characteristics. Specifically, how mass spectrometric, microscopic, spectroscopic, electrochemical, thermodynamic, and physical methods can be employed to obtain the various types of information required to understand battery behavior will be explored. Ways are then discussed how these methods can be coupled together in order to elucidate the multiscale phenomena at the anode interface and develop a holistic understanding of their relationship to overall sodium-ion battery function.  相似文献   
54.
The transport of auxin controls the rate, direction and localization of plant growth and development. The course of auxin transport is defined by the polar subcellular localization of the PIN proteins, a family of auxin efflux transporters. However, little is known about the composition and regulation of the PIN protein complex. Here, using blue‐native PAGE and quantitative mass spectrometry, we identify native PIN core transport units as homo‐ and heteromers assembled from PIN1, PIN2, PIN3, PIN4 and PIN7 subunits only. Furthermore, we show that endogenous flavonols stabilize PIN dimers to regulate auxin efflux in the same way as does the auxin transport inhibitor 1‐naphthylphthalamic acid (NPA). This inhibitory mechanism is counteracted both by the natural auxin indole‐3‐acetic acid and by phosphomimetic amino acids introduced into the PIN1 cytoplasmic domain. Our results lend mechanistic insights into an endogenous control mechanism which regulates PIN function and opens the way for a deeper understanding of the protein environment and regulation of the polar auxin transport complex.  相似文献   
55.
Marek’s disease virus (MDV) is an alphaherpesvirus that causes immunosuppression and deadly lymphoma in chickens. Lymphoid organs play a central role in MDV infection in animals. B-cells in the bursa of Fabricius facilitate high levels of MDV replication and contribute to dissemination at early stages of infection. Several studies investigated host responses in bursal tissue of MDV-infected chickens; however, the cellular responses specifically in bursal B-cells has never been investigated. We took advantage of our recently established in vitro infection system to decipher the cellular responses of bursal B-cells to infection with a very virulent MDV strain. Here, we demonstrate that MDV infection extends the survival of bursal B-cells in culture. Microarray analyses revealed that most cytokine/cytokine-receptor-, cell cycle- and apoptosis-associated genes are significantly down-regulated in these cells. Further functional assays validated these strong effects of MDV infections on cell cycle progression and thus, B-cell proliferation. In addition, we confirmed that MDV infections protect B-cells from apoptosis and trigger an accumulation of the autophagy marker Lc3-II. Taken together, our data indicate that MDV-infected bursal B-cells show hallmarks of a senescence-like phenotype, leading to a prolonged B-cell survival. This study provides an in-depth analysis of bursal B-cell responses to MDV infection and important insights into how the virus extends the survival of these cells.  相似文献   
56.
Aims Studies integrating phylogenetic history and large-scale community assembly are few, and many questions remain unanswered. Here, we use a global coastal dune plant data set to uncover the important factors in community assembly across scales from the local filtering processes to the global long-term diversification and dispersal dynamics. Coastal dune plant communities occur worldwide under a wide range of climatic and geologic conditions as well as in all biogeographic regions. However, global patterns in the phylogenetic composition of coastal dune plant communities have not previously been studied.Methods The data set comprised vegetation data from 18463 plots in New Zealand, South Africa, South America, North America and Europe. The phylogenetic tree comprised 2241 plant species from 149 families. We calculated phylogenetic clustering (Net Relatedness Index, NRI, and Nearest Taxon Index, NTI) of regional dune floras to estimate the amount of in situ diversification relative to the global dune species pool and evaluated the relative importance of land and climate barriers for these diversification patterns by geographic analyses of phylogenetic similarity. We then tested whether dune plant communities exhibit similar patterns of phylogenetic structure within regions. Finally, we calculated NRI for local communities relative to the regional species pool and tested for an association with functional traits (plant height and seed mass) thought to vary along sea–inland gradients.Important findings Regional species pools were phylogenetically clustered relative to the global pool, indicating regional diversification. NTI showed stronger clustering than NRI pointing to the importance of especially recent diversifications within regions. The species pools grouped phylogenetically into two clusters on either side of the tropics suggesting greater dispersal rates within hemispheres than between hemispheres. Local NRI plot values confirmed that most communities were also phylogenetically clustered within regions. NRI values decreased with increasing plant height and seed mass, indicating greater phylogenetic clustering in communities with short maximum height and good dispersers prone to wind and tidal disturbance as well as salt spray, consistent with environmental filtering along sea–inland gradients. Height and seed mass both showed significant phylogenetic signal, and NRI tended to correlate negatively with both at the plot level. Low NRI plots tended to represent coastal scrub and forest, whereas high NRI plots tended to represent herb-dominated vegetation. We conclude that regional diversification processes play a role in dune plant community assembly, with convergence in local phylogenetic community structure and local variation in community structure probably reflecting consistent coastal-inland gradients. Our study contributes to a better understanding of the globally distributed dynamic coastal ecosystems and the structuring factors working on dune plant communities across spatial scales and regions.  相似文献   
57.
Both parasitology and stem cell research are important disciplines in their own right. Parasites are a real threat to human health causing a broad spectrum of diseases and significant annual rates morbidity and mortality globally. Stem cell research, on the other hand, focuses on the potential for regenerative medicine for a range of diseases including cancer and regenerative therapies. Though these two topics might appear distant, there are some "unexpected encounters". In this review, we summarise the various links between parasites and stem cells. First,we discuss how parasites' own stem cells represent interesting models of regeneration that can be translated to human stem cell regeneration. Second, we explore the interactions between parasites and host stem cells during the course of infection. Third, we investigate from a clinical perspective, how stem cell regeneration can be exploited to help circumvent the damage induced by parasitic infection and its potential to serve as treatment options for parasitic diseases in the future. Finally, we discuss the importance of screening for pathogens during organ transplantation by presenting some clinical cases of parasitic infection following stem cell therapy.  相似文献   
58.
We demonstrate broad-field, non-scanning, two-photon excitation fluorescence (2PEF) close to a glass/cell interface by total internal reflection of a femtosecond-pulsed infrared laser beam. We exploit the quadratic intensity dependence of 2PEF to provide non-linear evanescent wave (EW) excitation in a well-defined sample volume and to eliminate scattered background excitation. A simple model is shown to describe the resulting 2PEF intensity and to predict the effective excitation volume in terms of easily measurable beam, objective and interface properties. We demonstrate non-linear evanescent wave excitation at 860 nm of acridine orange-labelled secretory granules in live chromaffin cells, and excitation at 900 nm of TRITC-phalloidin-actin/GPI-GFP double-labelled fibroblasts. The confined excitation volume and the possibility of simultaneous multi-colour excitation of several fluorophores make EW 2PEF particularly advantageous for quantitative microscopy, imaging biochemistry inside live cells, or biosensing and screening applications in miniature high-density multi-well plates.Abbreviations 1PEF one-photon excited fluorescence - 2PEF two-photon excited fluorescence - APD avalanche photo diode - CHO Chinese hamster ovary - DMEM Dulbecco's modified Eagle's medium - EGFP enhanced green fluorescent protein - EW evanescent wave - FCS fetal calf serum - GPI glycosylphosphatidylinositol - TIR total internal reflectionThis paper is dedicated to the memory of Prof. Horst Harreis (1940–2002)  相似文献   
59.
Previous studies describe a correlation between HPV-positivity and non-smoking in TSCC; p16INK4A-expression as surrogate-marker for HPV-DNA/RNA-positivity is discussed controversially. In the present study, these parameters are assessed prospectively. HPV-status of sputum and tonsillar-swabs was analyzed to determine their validity as surrogate-marker for tissue-HPV-status.TSCC- (n = 52) and non-neoplastic tonsillar tissue (n = 163) were analyzed. HPV-DNA- and HPV-RNA-status of total sputum, cellular fraction and supernatants, tonsillar-swabs and -tissue was determined by (RT)-PCR. Immunohistochemistry determined p16INK4A-expression.23/163 (14.2%) non-neoplastic tonsils were HPV-DNA-positive; five patients (3 HPV16, 2 HPV11) had active HPV-infections (HPV-RNA-positive), in all biomaterials. 140/163 (85.9%) patients were either HPV-DNA-positive or HPV-DNA-negative in all samples. 21/52 (40.4%) TSCC-tonsils were HPV-DNA-positive; 17 patients were HPV-RNA-positive (14 HPV16; 4 HPV18). 40/52 (76.9%) TSCC-patients were congruent in all biomaterials. p16INK4A-expression alone would have misclassified the HPV-status of 14/52 (26.2%) TSCC-patients.This prospective study confirms the discrepancy between HPV-status and p16INK4A-expression and the significant correlation between non-smoking and HPV-DNA-positivity. HPV-sputum- and/or swab-results do not consistently match tissue-results, possibly having (detrimental) consequences if those were used to assess tissue-HPV-status. In the 5 patients with active HPV infection in the non-neoplasitic tonsils, tonsillectomy likely prevented subsequent development of TSCC.  相似文献   
60.
We sampled 14,603 geometrid moths along a forested elevational gradient from 1020–3021 m in the southern Ecuadorian Andes, and then employed DNA barcoding to refine decisions on species boundaries initially made by morphology. We compared the results with those from an earlier study on the same but slightly shorter gradient that relied solely on morphological criteria to discriminate species. The present analysis revealed 1857 putative species, an 80% increase in species richness from the earlier study that detected only 1010 species. Measures of species richness and diversity that are less dependent on sample size were more than twice as high as in the earlier study, even when analysis was restricted to an identical elevational range. The estimated total number of geometrid species (new dataset) in the sampled area is 2350. Species richness at single sites was 32–43% higher, and the beta diversity component rose by 43–51%. These impacts of DNA barcoding on measures of richness reflect its capacity to reveal cryptic species that were overlooked in the first study. The overall results confirmed unique diversity patterns reported in the first investigation. Species diversity was uniformly high along the gradient, declining only slightly above 2800 m. Species turnover also showed little variation along the gradient, reinforcing the lack of evidence for discrete faunal zones. By confirming these major biodiversity patterns, the present study establishes that incomplete species delineation does not necessarily conceal trends of biodiversity along ecological gradients, but it impedes determination of the true magnitude of diversity and species turnover.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号