首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3751篇
  免费   295篇
  4046篇
  2024年   3篇
  2023年   37篇
  2022年   78篇
  2021年   155篇
  2020年   82篇
  2019年   100篇
  2018年   118篇
  2017年   99篇
  2016年   140篇
  2015年   243篇
  2014年   262篇
  2013年   270篇
  2012年   444篇
  2011年   361篇
  2010年   210篇
  2009年   181篇
  2008年   254篇
  2007年   235篇
  2006年   166篇
  2005年   152篇
  2004年   110篇
  2003年   108篇
  2002年   84篇
  2001年   20篇
  2000年   13篇
  1999年   23篇
  1998年   16篇
  1997年   7篇
  1996年   5篇
  1995年   4篇
  1994年   3篇
  1993年   7篇
  1992年   8篇
  1991年   5篇
  1990年   3篇
  1989年   2篇
  1988年   3篇
  1987年   3篇
  1986年   4篇
  1984年   3篇
  1983年   2篇
  1976年   4篇
  1968年   2篇
  1961年   1篇
  1960年   2篇
  1955年   1篇
  1934年   1篇
  1933年   2篇
  1932年   1篇
  1929年   1篇
排序方式: 共有4046条查询结果,搜索用时 15 毫秒
81.
Somatosensory neurons in teleosts and amphibians are sensitive to thermal, mechanical, or nociceptive stimuli [1, 2]. The two main types of such cells in zebrafish--Rohon-Beard and trigeminal neurons--have served as models for neural development [3-6], but little is known about how they encode tactile stimuli. The hindbrain networks that transduce somatosensory stimuli into a motor output encode information by using very few spikes in a small number of cells [7], but it is unclear whether activity in the primary receptor neurons is similarly efficient. To address this question, we manipulated the activity of zebrafish neurons with the light-activated cation channel, Channelrhodopsin-2 (ChR2) [8, 9]. We found that photoactivation of ChR2 in genetically defined populations of somatosensory neurons triggered escape behaviors in 24-hr-old zebrafish. Electrophysiological recordings from ChR2-positive trigeminal neurons in intact fish revealed that these cells have extremely low rates of spontaneous activity and can be induced to fire by brief pulses of blue light. Using this technique, we find that even a single action potential in a single sensory neuron was at times sufficient to evoke an escape behavior. These results establish ChR2 as a powerful tool for the manipulation of neural activity in zebrafish and reveal a degree of efficiency in coding that has not been found in primary sensory neurons.  相似文献   
82.
83.
Pest insects have a profound negative impact on agriculture and human health. Significant global losses of crops, stored agricultural products, timber and livestock can be attributed to damage and destruction by insects . Blood-feeding insects such as mosquitoes, flies and ticks transmit many of humanity's most devastating infectious diseases. Insect-borne diseases account for more than one million annual fatalities, and insect-associated illnesses surpass 300 million annual reported cases . The medical and economic impact of these animals can be ascribed in part to the sensitivity and selectivity of their olfactory systems, essential for location of their preferred plant and animal hosts.  相似文献   
84.
Biphasic reaction systems for enzyme catalysis are an elegant way to overcome limited solubility and stability of reactants and facilitate continuous processes. However, many synthetically useful enzymes are not stable in biphasic systems of water and organic solvent. The entrapment in polymer beads of polyvinyl alcohol has been shown to enable the stable operation of enzymes unstable in conventional biphasic reaction systems. We report the extension of this concept to continuous operation in a fluidised bed reactor. The enzyme benzaldehyde lyase was used for the continuous synthesis of enantiopure (R)-3,3'-furoin. The results show enhanced stability with half-life times under operation conditions of more than 100 h, as well as superior enzyme utilisation in terms of productivity. Furthermore, racemisation and oxidation of the product could be successfully prevented under the non-aqueous and inert reaction conditions.  相似文献   
85.
86.
Wetlands are important providers of ecosystem services and key regulators of climate change. They positively contribute to global warming through their greenhouse gas emissions, and negatively through the accumulation of organic material in histosols, particularly in peatlands. Our understanding of wetlands’ services is currently constrained by limited knowledge on their distribution, extent, volume, interannual flood variability and disturbance levels. We present an expert system approach to estimate wetland and peatland areas, depths and volumes, which relies on three biophysical indices related to wetland and peat formation: (1) long‐term water supply exceeding atmospheric water demand; (2) annually or seasonally water‐logged soils; and (3) a geomorphological position where water is supplied and retained. Tropical and subtropical wetlands estimates reach 4.7 million km2 (Mkm2). In line with current understanding, the American continent is the major contributor (45%), and Brazil, with its Amazonian interfluvial region, contains the largest tropical wetland area (800,720 km2). Our model suggests, however, unprecedented extents and volumes of peatland in the tropics (1.7 Mkm2 and 7,268 (6,076–7,368) km3), which more than threefold current estimates. Unlike current understanding, our estimates suggest that South America and not Asia contributes the most to tropical peatland area and volume (ca. 44% for both) partly related to some yet unaccounted extended deep deposits but mainly to extended but shallow peat in the Amazon Basin. Brazil leads the peatland area and volume contribution. Asia hosts 38% of both tropical peat area and volume with Indonesia as the main regional contributor and still the holder of the deepest and most extended peat areas in the tropics. Africa hosts more peat than previously reported but climatic and topographic contexts leave it as the least peat‐forming continent. Our results suggest large biases in our current understanding of the distribution, area and volumes of tropical peat and their continental contributions.  相似文献   
87.
88.
Transgenic mice targeted for the c-ros gene, which are fertile when heterozygous (HET), but infertile when homozygous (knockout, KO) and associated with failure in pubertal differentiation of the epididymal initial segment, provide a model for studying the role of the epididymal luminal environment in sperm development. Luminal fluid from the cauda epididymidis was measured by both ion-selective microelectrodes and pH strips to be 0.3 pH units higher in the KO than HET. Of the genes responsible for luminal acidification, expression of mRNA of vacuolar H(+)-ATPase was found in all epididymal regions, but with no difference between KO and HET. Immunohistochemistry showed its presence in epithelial apical cells and clear cells. The Na(+)-hydrogen exchanger NHE2 was expressed at mRNA and protein levels in the caput but only marginally detectable if at all in the distal epididymis. This was compensated for by NHE3 which was expressed strongest in the cauda region, in agreement with immunohistochemical staining. Quantification of Western blot data revealed slight, but significant, decreases of NHE2 in the caput and of NHE3 in the cauda in the KO mice. The increase in luminal fluid pH in the KO mice could also be contributed to by other epithelial regulating factors including the Na(+)-dependent glutamate transporter EAAC1 formerly reported to be down regulated in the KO.  相似文献   
89.
The mitochondrial amidoxime reducing component mARC is a newly discovered molybdenum enzyme that is presumed to form the catalytical part of a three-component enzyme system, consisting of mARC, heme/cytochrome b5, and NADH/FAD-dependent cytochrome b5 reductase. mARC proteins share a significant degree of homology to the molybdenum cofactor-binding domain of eukaryotic molybdenum cofactor sulfurase proteins, the latter catalyzing the post-translational activation of aldehyde oxidase and xanthine oxidoreductase. The human genome harbors two mARC genes, referred to as hmARC-1/MOSC-1 and hmARC-2/MOSC-2, which are organized in a tandem arrangement on chromosome 1. Recombinant expression of hmARC-1 and hmARC-2 proteins in Escherichia coli reveals that both proteins are monomeric in their active forms, which is in contrast to all other eukaryotic molybdenum enzymes that act as homo- or heterodimers. Both hmARC-1 and hmARC-2 catalyze the N-reduction of a variety of N-hydroxylated substrates such as N-hydroxy-cytosine, albeit with different specificities. Reconstitution of active molybdenum cofactor onto recombinant hmARC-1 and hmARC-2 proteins in the absence of sulfur indicates that mARC proteins do not belong to the xanthine oxidase family of molybdenum enzymes. Moreover, they also appear to be different from the sulfite oxidase family, because no cysteine residue could be identified as a putative ligand of the molybdenum atom. This suggests that the hmARC proteins and sulfurase represent members of a new family of molybdenum enzymes.  相似文献   
90.
Plant cell growth is limited by the extension of cell walls, which requires both the synthesis and rearrangement of cell wall components in a controlled fashion. The target of rapamycin (TOR) pathway is a major regulator of cell growth in eukaryotes, and inhibition of this pathway by rapamycin reduces cell growth. Here, we show that in plants, the TOR pathway affects cell wall structures. LRR-extensin1 (LRX1) of Arabidopsis thaliana is an extracellular protein involved in cell wall formation in root hairs, and lrx1 mutants develop aberrant root hairs. rol5 (for repressor of lrx1) was identified as a suppressor of lrx1. The functionally similar ROL5 homolog in yeast, Ncs6p (needs Cla4 to survive 6), was previously found to affect TOR signaling. Inhibition of TOR signaling by rapamycin led to suppression of the lrx1 mutant phenotype and caused specific changes to galactan/rhamnogalacturonan-I and arabinogalactan protein components of cell walls that were similar to those observed in the rol5 mutant. The ROL5 protein accumulates in mitochondria, a target of the TOR pathway and major source of reactive oxygen species (ROS), and rol5 mutants show an altered response to ROS. This suggests that ROL5 might function as a mitochondrial component of the TOR pathway that influences the plant''s response to ROS.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号