全文获取类型
收费全文 | 2544篇 |
免费 | 197篇 |
国内免费 | 1篇 |
专业分类
2742篇 |
出版年
2022年 | 26篇 |
2021年 | 44篇 |
2020年 | 24篇 |
2019年 | 33篇 |
2018年 | 42篇 |
2017年 | 32篇 |
2016年 | 58篇 |
2015年 | 149篇 |
2014年 | 119篇 |
2013年 | 211篇 |
2012年 | 209篇 |
2011年 | 215篇 |
2010年 | 115篇 |
2009年 | 115篇 |
2008年 | 144篇 |
2007年 | 196篇 |
2006年 | 156篇 |
2005年 | 134篇 |
2004年 | 122篇 |
2003年 | 121篇 |
2002年 | 111篇 |
2001年 | 19篇 |
2000年 | 9篇 |
1999年 | 27篇 |
1998年 | 32篇 |
1997年 | 24篇 |
1996年 | 21篇 |
1995年 | 16篇 |
1994年 | 23篇 |
1993年 | 18篇 |
1992年 | 6篇 |
1991年 | 11篇 |
1990年 | 9篇 |
1988年 | 4篇 |
1987年 | 4篇 |
1986年 | 6篇 |
1985年 | 4篇 |
1984年 | 8篇 |
1982年 | 6篇 |
1981年 | 4篇 |
1980年 | 5篇 |
1979年 | 4篇 |
1978年 | 5篇 |
1976年 | 4篇 |
1975年 | 5篇 |
1974年 | 4篇 |
1973年 | 7篇 |
1950年 | 3篇 |
1943年 | 3篇 |
1937年 | 3篇 |
排序方式: 共有2742条查询结果,搜索用时 15 毫秒
71.
72.
Complete glycosylphosphatidylinositol anchors are required in Candida albicans for full morphogenesis, virulence and resistance to macrophages 总被引:1,自引:0,他引:1
Richard M Ibata-Ombetta S Dromer F Bordon-Pallier F Jouault T Gaillardin C 《Molecular microbiology》2002,44(3):841-853
Glycosylphosphatidylinositol (GPI)-anchored proteins are involved in cell wall integrity and cell-cell interactions. We disrupted the Candida albicans homologue of the Saccharomyces cerevisiae GPI7/LAS21 gene, which encodes a GPI anchor-modifying activity. In the mutant and on solid media, the yeast-to-hyphae transition was blocked, whereas chlamydospore formation was enhanced. However, the morphogenetic switch was normal in liquid medium. Abnormal budding patterns, cytokinesis and cell shape were observed in both liquid and solid media. The cell wall structure was also modified in the mutants, as shown by hypersensitivity to Calcofluor white. In vitro and in vivo assays revealed that the mutant interacted with its host in a modified way, resulting in reduced virulence in mice and reduced survival in the gastrointestinal environment of mice. The mitogen-activated protein (MAP) kinase pathway of macrophages was downregulated by the wild-type cells but not by the DeltaCagpi7 null strains. In agreement with this abnormal behaviour, mutant cells were more sensitive to the lytic action of macrophages. Our results indicate that a functional GPI anchor is required for full hyphal formation in C. albicans, and that perturbation of the GPI biosynthesis results in hypersensitivity to host defences. 相似文献
73.
Coagulation factor VIIa (FVIIa) is a key protease initiating the coagulation cascade in the presence of its receptor, tissue factor (TF). FVIIa elicits several cellular responses, probably involving other receptors(s) than TF. This study investigates the implication of recombinant FVIIa on the apoptosis of K562 erythroleukemia cells. These cells undergo apoptosis when induced to differentiate towards the erythroid lineage by hemin. They do not express TF, but can be transfected to do so. FVIIa treatment significantly reduced the degree of hemin-induced apoptosis in K562 cells, but not in TF+ derived transfectants. Induction of apoptosis by hemin also elicited decrease in intracellular Ca2+ concentration ([Ca2+]i), but FVIIa restored this [Ca2+]i close to that of non-treated cells. These results suggest that FVIIa acts via a TF-independent pathway to counteract apoptosis by a mechanism involving its Gla domain and linked to the maintenance of Ca2+ homeostasis in K562 cells. 相似文献
74.
Giri R Selvaraj S Miller CA Hofman F Yan SD Stern D Zlokovic BV Kalra VK 《American journal of physiology. Cell physiology》2002,283(3):C895-C904
During normal aging and amyloid beta-peptide (Abeta) disorders such as Alzheimer's disease (AD), one finds increased deposition of Abeta and activated monocytes/microglial cells in the brain. Our previous studies show that Abeta interaction with a monolayer of normal human brain microvascular endothelial cells results in increased adherence and transmigration of monocytes. Relatively little is known of the role of Abeta accumulated in the AD brain in mediating trafficking of peripheral blood monocytes (PBM) across the blood-brain barrier (BBB) and concomitant accumulation of monocytes/microglia in the AD brain. In this study, we showed that interaction of Abeta(1--40) with apical surface of monolayer of brain endothelial cells (BEC), derived either from normal or AD individuals, resulted in increased transendothelial migration of monocytic cells (HL-60 and THP-1) and PBM. However, transmigration of monocytes across the BEC monolayer cultivated in a Transwell chamber was increased 2.5-fold when Abeta was added to the basolateral side of AD compared with normal individual BEC. The Abeta-induced transmigration of monocytes was inhibited in both normal and AD-BEC by antibodies to the putative Abeta receptor, receptor for advanced glycation end products (RAGE), and to the endothelial cell junction molecule, platelet-endothelial cell adhesion molecule-1 (PECAM-1). We conclude that interaction of Abeta with the basolateral surface of AD-BEC induces cellular signaling, promoting transmigration of monocytes from the apical to basolateral direction. We suggest that Abeta in the AD brain parenchyma or cerebrovasculature initiates cellular signaling that induces PBM to transmigrate across the BBB and accumulate in the brain. 相似文献
75.
76.
The NLRP3 inflammasome is differentially activated by pneumolysin variants and contributes to host defense in pneumococcal pneumonia 总被引:1,自引:0,他引:1
Witzenrath M Pache F Lorenz D Koppe U Gutbier B Tabeling C Reppe K Meixenberger K Dorhoi A Ma J Holmes A Trendelenburg G Heimesaat MM Bereswill S van der Linden M Tschopp J Mitchell TJ Suttorp N Opitz B 《Journal of immunology (Baltimore, Md. : 1950)》2011,187(1):434-440
Streptococcus pneumoniae is a leading cause of pneumonia, meningitis, and sepsis. Pneumococci can be divided into >90 serotypes that show differences in the pathogenicity and invasiveness. We tested the hypotheses that the innate immune inflammasome pathway is involved in fighting pneumococcal pneumonia and that some invasive pneumococcal types are not recognized by this pathway. We show that human and murine mononuclear cells responded to S. pneumoniae expressing hemolytic pneumolysin by producing IL-1β. This IL-1β production depended on the NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome. Some serotype 1, serotype 8, and serotype 7F bacteria, which have previously been associated with increased invasiveness and with production of toxins with reduced hemolytic activity, or bacterial mutants lacking pneumolysin did not stimulate notable IL-1β production. We further found that NLRP3 was beneficial for mice during pneumonia caused by pneumococci expressing hemolytic pneumolysin and was involved in cytokine production and maintenance of the pulmonary microvascular barrier. Overall, the inflammasome pathway is protective in pneumonia caused by pneumococci expressing hemolytic toxin but is not activated by clinically important pneumococcal sequence types causing invasive disease. The study indicates that a virulence factor polymorphism may substantially affect the recognition of bacteria by the innate immune system. 相似文献
77.
Cl��ment Faye Christophe Moreau Emilie Chautard Reidunn Jetne Naomi Fukai Florence Ruggiero Martin J. Humphries Bjorn R. Olsen Sylvie Ricard-Blum 《The Journal of biological chemistry》2009,284(33):22029-22040
Endostatin is an endogenous inhibitor of angiogenesis. Although several endothelial cell surface molecules have been reported to interact with endostatin, its molecular mechanism of action is not fully elucidated. We used surface plasmon resonance assays to characterize interactions between endostatin, integrins, and heparin/heparan sulfate. α5β1 and αvβ3 integrins form stable complexes with immobilized endostatin (KD = ∼1.8 × 10−8 m, two-state model). Two arginine residues (Arg27 and Arg139) are crucial for the binding of endostatin to integrins and to heparin/heparan sulfate, suggesting that endostatin would not bind simultaneously to integrins and to heparan sulfate. Experimental data and molecular modeling support endostatin binding to the headpiece of the αvβ3 integrin at the interface between the β-propeller domain of the αv subunit and the βA domain of the β3 subunit. In addition, we report that α5β1 and αvβ3 integrins bind to heparin/heparan sulfate. The ectodomain of the α5β1 integrin binds to haparin with high affinity (KD = 15.5 nm). The direct binding between integrins and heparin/heparan sulfate might explain why both heparan sulfate and α5β1 integrin are required for the localization of endostatin in endothelial cell lipid rafts.Endostatin is an endogenous inhibitor of angiogenesis that inhibits proliferation and migration of endothelial cells (1–3). This C-fragment of collagen XVIII has also been shown to inhibit 65 different tumor types and appears to down-regulate pathological angiogenesis without side effects (2). Endostatin regulates angiogenesis by complex mechanisms. It modulates embryonic vascular development by enhancing proliferation, migration, and apoptosis (4). It also has a biphasic effect on the inhibition of endothelial cell migration in vitro, and endostatin therapy reveals a U-shaped curve for antitumor activity (5, 6). Short term exposure of endothelial cells to endostatin may be proangiogenic, unlike long term exposure, which is anti-angiogenic (7). The effect of endostatin depends on its concentration and on the type of endothelial cells (8). It exerts the opposite effects on human umbilical vein endothelial cells and on endothelial cells derived from differentiated embryonic stem cells. Furthermore, two different mechanisms (heparin-dependent and heparin-independent) may exist for the anti-proliferative activity of endostatin depending on the growth factor used to induce cell proliferation (fibroblast growth factor 2 or vascular endothelial growth factor). Its anti-proliferative effect on endothelial cells stimulated by fibroblast growth factor 2 is mediated by the binding of endostatin to heparan sulfate (9), whereas endostatin inhibits vascular endothelial growth factor-induced angiogenesis independently of its ability to bind heparin and heparan sulfate (9, 10). The broad range of molecular targets of endostatin suggests that multiple signaling systems are involved in mediating its anti-angiogenic action (11), and although several endothelial cell surface molecules have been reported to interact with endostatin, its molecular mechanisms of action are not as fully elucidated as they are for other endogenous angiogenesis inhibitors (11).Endostatin binds with relatively low affinity to several membrane proteins including α5β1 and αvβ3 integrins (12), heparan sulfate proteoglycans (glypican-1 and -4) (13), and KDR/Flk1/vascular endothelial growth factor receptor 2 (14), but no high affinity receptor(s) has been identified so far. The identification of molecular interactions established by endostatin at the cell surface is a first step toward the understanding of the mechanisms by which endostatin regulates angiogenesis. We have previously characterized the binding of endostatin to heparan sulfate chains (9). In the present study we have focused on characterizing the interactions between endostatin, α5β1, αvβ3, and αvβ5 integrins and heparan sulfate. Although interactions between several integrins and endostatin have been studied previously in solid phase assays (12) and in cell models (12, 15, 16), no molecular data are available on the binding site of endostatin to the integrins. We found that two arginine residues of endostatin (Arg27 and Arg139) participate in binding to integrins and to heparan sulfate, suggesting that endostatin is not able to bind simultaneously to these molecules displayed at the cell surface. Furthermore, we have demonstrated that α5β1, αvβ3, and αvβ5 integrins bind to heparan sulfate. This may explain why both heparan sulfate and α5β1 integrins are required for the localization of endostatin in lipid rafts, in support of the model proposed by Wickström et al. (15). 相似文献
78.
NOD1 is a cytosolic signalling host pattern-recognition receptor composed of a caspase-activating and recruitment domain (CARD), a nucleotide-binding and oligomerization domain (NOD) and leucine-rich repeats. It plays a crucial role in innate immunity by activating the NF-kappaB pathway via its downstream effector the kinase RICK (RIP2) following the recognition of a specific bacterial ligand. RICK is recruited by NOD1 through interaction of their respective CARDs. Here we present the high resolution NMR structure of the NOD1 CARD. It is generally similar to other CARDs of known structure, consisting of six tightly packed helices, although the length and orientation of the last helix is unusual. Mutations in both the NOD1 and RICK CARD domains were assayed by immuno-precipitation of cell lysates and in vivo NF-kappaB activation in order to define residues important for CARD-CARD interaction and downstream signalling. The results show that the interaction is critically dependent on three acidic residues on NOD1 CARD and three basic residues on RICK CARD and thus is likely to have a strong electrostatic component, similar to other characterised CARD-CARD interactions. 相似文献
79.
80.