首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2546篇
  免费   204篇
  国内免费   1篇
  2022年   23篇
  2021年   44篇
  2020年   24篇
  2019年   33篇
  2018年   42篇
  2017年   32篇
  2016年   58篇
  2015年   149篇
  2014年   120篇
  2013年   211篇
  2012年   209篇
  2011年   214篇
  2010年   115篇
  2009年   115篇
  2008年   144篇
  2007年   196篇
  2006年   156篇
  2005年   134篇
  2004年   122篇
  2003年   121篇
  2002年   111篇
  2001年   19篇
  2000年   9篇
  1999年   28篇
  1998年   32篇
  1997年   25篇
  1996年   21篇
  1995年   16篇
  1994年   24篇
  1993年   19篇
  1992年   7篇
  1991年   13篇
  1990年   10篇
  1988年   5篇
  1987年   4篇
  1986年   7篇
  1985年   4篇
  1984年   8篇
  1982年   6篇
  1981年   5篇
  1980年   5篇
  1979年   4篇
  1978年   6篇
  1976年   4篇
  1975年   5篇
  1974年   4篇
  1973年   7篇
  1950年   3篇
  1943年   3篇
  1937年   3篇
排序方式: 共有2751条查询结果,搜索用时 250 毫秒
121.
Phagocyte NADPH oxidase generates O2. for defense mechanisms and cellular signaling. Myeloid-related proteins MRP8 and MRP14 of the S100 family are EF-hand calcium-binding proteins. MRP8 and MRP14 were co-isolated from neutrophils on an anti-p47phox matrix with oxidase cytosolic factors and identified by mass spectrometry. MRP8 and MRP14 are absent from Epstein-Barr virus-immortalized B lymphocytes, and, coincidentally, these cells display weak oxidase activity compared with neutrophils. MRP8/MRP14 that was purified from neutrophils enhanced oxidase turnover of B cells in vitro, suggesting that MRP8/MRP14 is involved in the activation process. This was confirmed ex vivo by co-transfection of Epstein-Barr virus-transformed B lymphocytes with genes encoding MRP8 and MRP14. In a semi-recombinant cell-free assay, recombinant MRP8/MRP14 increased the affinity of p67phox for cytochrome b558 synergistically with p47phox. Moreover, MRP8/MRP14 initiated oxidase activation on its own, through a calcium-dependent specific interaction with cytochrome b558 as shown by atomic force microscopy and a structure-function relationship investigation. The data suggest that the change of conformation in cytochrome b558, which initiates the electron transfer, can be mediated by effectors other than oxidase cytosolic factors p67phox and p47phox. Moreover, MRP8/MRP14 dimer behaves as a positive mediator of phagocyte NADPH oxidase regulation.  相似文献   
122.
During normal aging and amyloid beta-peptide (Abeta) disorders such as Alzheimer's disease (AD), one finds increased deposition of Abeta and activated monocytes/microglial cells in the brain. Our previous studies show that Abeta interaction with a monolayer of normal human brain microvascular endothelial cells results in increased adherence and transmigration of monocytes. Relatively little is known of the role of Abeta accumulated in the AD brain in mediating trafficking of peripheral blood monocytes (PBM) across the blood-brain barrier (BBB) and concomitant accumulation of monocytes/microglia in the AD brain. In this study, we showed that interaction of Abeta(1--40) with apical surface of monolayer of brain endothelial cells (BEC), derived either from normal or AD individuals, resulted in increased transendothelial migration of monocytic cells (HL-60 and THP-1) and PBM. However, transmigration of monocytes across the BEC monolayer cultivated in a Transwell chamber was increased 2.5-fold when Abeta was added to the basolateral side of AD compared with normal individual BEC. The Abeta-induced transmigration of monocytes was inhibited in both normal and AD-BEC by antibodies to the putative Abeta receptor, receptor for advanced glycation end products (RAGE), and to the endothelial cell junction molecule, platelet-endothelial cell adhesion molecule-1 (PECAM-1). We conclude that interaction of Abeta with the basolateral surface of AD-BEC induces cellular signaling, promoting transmigration of monocytes from the apical to basolateral direction. We suggest that Abeta in the AD brain parenchyma or cerebrovasculature initiates cellular signaling that induces PBM to transmigrate across the BBB and accumulate in the brain.  相似文献   
123.
We have isolated the entire coding sequence of human FRAT2 (frequently rearranged in advanced T-cell lymphomas-2). It exhibits appreciable amino acid identity to FRAT1 (77%) which was initially isolated as frequently being overexpressed in a murine leukemia virus insertion model in murine tumors. FRAT proteins are thought to play a role in Wnt signaling. They can bind to glycogen synthase kinase-3 (GSK-3) and Dishevelled, two proteins involved in Wnt signal transduction. Both hFRAT1 and hFRAT2 are intronless genes localized to the same portion of chromosome 10q24.1 and separated by only 10.7 kb. In a broad range of human tissues FRAT1 and FRAT2 are readily detected and expressed in a near identical pattern. Both species are repressed when the human embryonal carcinoma cell line, NT2/D1, is induced to differentiate with all-trans retinoic acid (RA). This treatment had no appreciable effect on FRAT levels in two other RA-sensitive cell lines that were not of germ cell tumor origin. The overlapping expression patterns suggest these two genes share a regulatory region. Both FRAT genes exhibited three species of mRNA, which varied in representation between tissues. When transiently overexpressed in COS-1 cells, the FRAT proteins were detected in the cytosol and concentrated in the nucleus. Both hFRAT1 and hFRAT2 are implicated in the selective modulation of GSK-3 activity via the Wnt signaling pathway. This study provides a foundation from which to examine the role these proteins play in Wnt-dependent and -independent processes.  相似文献   
124.
The reaction of demethylation mediated by cytochrome P450 (CYP) leads to the equimolar production of demethylated metabolite and formaldehyde. From a 13C-substrate labeled on a carbon of the methyl moiety, [13C]formaldehyde (H13CHO) is liberated. A highly sensitive and specific assay involving the oxidation of H13CHO to 13CO(2) by a double-enzymatic-step reaction is reported. The 13CO(2) was quantified by the method of reverse isotopic dilution based on gas chromatography-isotope ratio mass spectrometry analysis. The method first involves the limiting step of the CYP-dependent reaction, which is stopped with a mixture of zinc sulfate 5 mM and trichloroacetic acid 100 mM. Then, the transformation of H13CHO to 13CO(2) is performed with the formaldehyde (0.2 unit) and the formate (0.2 unit) dehydrogenase NAD-dependent enzymes. The recovery of 13CO(2) from the incubation mixture was equal to 91.4 +/- 3.0%. The accuracy and the precision of the present method were within 12 and 10%, respectively. The limit of quantification was set to 25 pmol. The performance of the assay was validated on human liver microsomes with five probes: [13C]erythromycin, [1-13C]caffeine, [3-13C]caffeine, [7-13C]caffeine, and [13C(2)]aminopyrine. This method is useful for the rapid determination of N-demethylase activity of human liver microsomes from methyl-13C-substrates.  相似文献   
125.
We reported previously (Cayabyab, F. S., and Schlichter, L. C. (2002) J. Biol. Chem. 277, 13673-13681) a functional interaction between the ERG-1 K(+) channel and Src tyrosine kinase, which increased the current. We now show that the tyrosine phosphatase, SHP-1, which is present in microglia, is increased after brain damage, and is activated by colony-stimulating factor-1, associates with ERG-1 and regulates the current. Patch clamp recordings from the MLS-9 microglia cells were made with pipette solutions containing a recombinant SHP-1 protein: wild type (SHP-1 wild type (wt)), catalytically active (SHP-1 S6), or the substrate-trapping mutant (SHP-1 Cys --> Ser). SHP-1 wt and SHP-1 S6 proteins decreased the current, an effect that was reversed by the phosphatase inhibitor, pervanadate, whereas SHP-1 Cys --> Ser increased the current. Moreover, transient transfection with cDNA for SHP-1 wt or SHP-1 S6 decreased the ERG current without decreasing the protein level. Tyrosine phosphorylation of ERG-1 was decreased by transfection with SHP-1 wt and increased by SHP-1 Cys --> Ser. The decrease in current by active SHP-1 was partly attributed to changes in the voltage dependence of activation and steady-state conductance, whereas inactivation kinetics and voltage dependence were not affected. Our results show that ERG-1 is a SHP-1 substrate constituting the first report that an ion current is regulated by SHP-1.  相似文献   
126.
Long-chain hydroxy acid oxydase (HAO) is a member of a flavoenzyme family with significant amino acid sequence similarity and strongly conserved three-dimensional structure; in particular, active-site amino acids involved in catalysis are invariant, with one exception, and numerous enzymatic studies suggest an identical chemical mechanism involving an intermediate carbanion for all family members. Known physiological substrates are a variety of L-2-hydroxy acids. Peroxisomal HAO differs from the other family members in that its actual physiological substrate is not known; it was first described as an L-amino acid oxidase, and recently was identified as an enzyme that converts creatol (hydroxycreatinine) to methylguanidine (a metabolite involved in a variety of uremic syndromes). Creatol (2-amino-5-hydroxy-1-methyl-4(5H)imidazolone) is not a 2-hydroxy acid. We show in this work that 2-hydroxyphenyl acetohydroxamate (HYPAH, the hydroxamate of mandelic acid), a compound that bears similarity both to mandelate (one of the best substrates known) and to creatol, is turned over by HAO, but between 10- and 100-fold less efficiently than mandelate itself. The compound also binds to the active site of homologous flavocytochrome b(2) (L-lactate dehydrogenase). Comparative pH-rate studies for mandelate and its hydroxamate suggest that HYPAH may bind in its ionized form. Both pH-rate profiles are bell-shaped curves, as are those determined for two other family members, flavocytochrome b(2) and mandelate dehydrogenase; while the group with an acid pK(a) between 5 and 6 is most likely the active-site histidine (the residue which abstracts the substrate C2 proton), the identity of the basic group is less clear. It has been proposed to be one of the active site arginines (Lehoux, I., and Mitra, B. (1999) Biochemistry38, 5836-5848); we suggest as an alternative that it could be the lysine residue that interacts with the flavin N1 and O2 positions and stabilizes the negative charge of reduced flavin. In addition to these studies, we have found that HAO is competitively inhibited by benzohydroxamate, which is one atom shorter than HYPAH; its affinity is nearly 100-fold lower than that of the substrate, in contrast to the strong inhibition it exerts on mandelate racemase (Maurice, St. M., and Bearne, S. L. (2000) Biochemistry39, 13324-13335). In the latter case, the 100-fold higher affinity compared to mandelate was proposed to arise from the fact that the hydroxamate can mimic the enolic intermediate which lies on the reaction pathway after C2 proton abstraction. Thus our results do not support the existence of a similar enolic intermediate for HAO (and probably its homologues), although they do not disprove it.  相似文献   
127.
Among HLA-DP specificities, HLA-DP4 specificity involves at least two molecules, HLA-DPA1*0103/DPB1*0401 (DP401) and HLA-DPA1*0103/DPB1*0402 (DP402), which differ from each other by only three residues. Together, they are present worldwide at an allelic frequency of 20-60% and are the most abundant human HLA II alleles. Strikingly, the peptide-binding specificities of these molecules have never been investigated. Hence, in this study, we report the peptide-binding motifs of both molecules. We first set up a binding assay specific for the immunopurified HLA-DP4 molecules. Using multiple sets of synthetic peptides, we successfully defined the amino acid preferences of the anchor residues. With these assays, we were also able to identify new peptide ligands from allergens and viral and tumor Ags. DP401 and DP402 exhibit very similar patterns of recognition in agreement with molecular modeling of the complexes. Pockets P1 and P6 accommodate the main anchor residues and interestingly contain only two polymorphic residues, beta86 and beta11, respectively. Both positions are almost dimorphic and thus produce a limited number of pocket combinations. Taken together, our results support the existence of three main binding supertypes among HLA-DP molecules and should significantly contribute to the identification of universal epitopes to be used in peptide-based vaccines for cancer, as well as for allergic or infectious diseases.  相似文献   
128.
To study survival under prolonged and severe drought in the perennial grass Dactylis glomerata we compared dormant, resistant and sensitive cultivars (cvs.) in both field and glasshouse experiments. Water status, membrane stability and expression of dehydrins were assessed in the immature leaf bases, which are the last surviving organs. Analysis of leaf elongation and senescence of aerial tissues showed that dormancy was exhibited by the potentially dormant cultivar (cv.) only in the field. This cultivar exhibited a high survival rate, similar levels of dehydration and expression of a low-molecular weight (22–24 kDa) dehydrin in both drought and irrigated plants, whether fully dormant or not. At the same level of soil water deficit, there were no differences between the non-dormant drought resistant and drought sensitive cultivars in plant water status and membrane stability. However, the accumulation of dehydrins as drought progressed was markedly different between these cultivars and was associated with their contrasting survival. The possible role of the major low-molecular dehydrins in maintenance of cell integrity under dehydration is discussed with reference to both summer dormancy and survival under severe drought.  相似文献   
129.
130.
Glycosylphosphatidylinositol (GPI)-anchored proteins are involved in cell wall integrity and cell-cell interactions. We disrupted the Candida albicans homologue of the Saccharomyces cerevisiae GPI7/LAS21 gene, which encodes a GPI anchor-modifying activity. In the mutant and on solid media, the yeast-to-hyphae transition was blocked, whereas chlamydospore formation was enhanced. However, the morphogenetic switch was normal in liquid medium. Abnormal budding patterns, cytokinesis and cell shape were observed in both liquid and solid media. The cell wall structure was also modified in the mutants, as shown by hypersensitivity to Calcofluor white. In vitro and in vivo assays revealed that the mutant interacted with its host in a modified way, resulting in reduced virulence in mice and reduced survival in the gastrointestinal environment of mice. The mitogen-activated protein (MAP) kinase pathway of macrophages was downregulated by the wild-type cells but not by the DeltaCagpi7 null strains. In agreement with this abnormal behaviour, mutant cells were more sensitive to the lytic action of macrophages. Our results indicate that a functional GPI anchor is required for full hyphal formation in C. albicans, and that perturbation of the GPI biosynthesis results in hypersensitivity to host defences.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号