首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3033篇
  免费   265篇
  国内免费   1篇
  2022年   19篇
  2021年   56篇
  2020年   30篇
  2019年   34篇
  2018年   50篇
  2017年   36篇
  2016年   67篇
  2015年   163篇
  2014年   134篇
  2013年   235篇
  2012年   241篇
  2011年   241篇
  2010年   136篇
  2009年   133篇
  2008年   168篇
  2007年   218篇
  2006年   175篇
  2005年   164篇
  2004年   135篇
  2003年   138篇
  2002年   123篇
  2001年   39篇
  2000年   32篇
  1999年   46篇
  1998年   40篇
  1997年   40篇
  1996年   30篇
  1995年   31篇
  1994年   28篇
  1993年   23篇
  1992年   13篇
  1991年   15篇
  1990年   20篇
  1989年   8篇
  1988年   8篇
  1987年   13篇
  1986年   13篇
  1985年   8篇
  1984年   12篇
  1982年   8篇
  1981年   7篇
  1980年   8篇
  1979年   15篇
  1978年   8篇
  1976年   11篇
  1975年   9篇
  1974年   6篇
  1973年   9篇
  1971年   7篇
  1969年   6篇
排序方式: 共有3299条查询结果,搜索用时 31 毫秒
161.
During normal aging and amyloid beta-peptide (Abeta) disorders such as Alzheimer's disease (AD), one finds increased deposition of Abeta and activated monocytes/microglial cells in the brain. Our previous studies show that Abeta interaction with a monolayer of normal human brain microvascular endothelial cells results in increased adherence and transmigration of monocytes. Relatively little is known of the role of Abeta accumulated in the AD brain in mediating trafficking of peripheral blood monocytes (PBM) across the blood-brain barrier (BBB) and concomitant accumulation of monocytes/microglia in the AD brain. In this study, we showed that interaction of Abeta(1--40) with apical surface of monolayer of brain endothelial cells (BEC), derived either from normal or AD individuals, resulted in increased transendothelial migration of monocytic cells (HL-60 and THP-1) and PBM. However, transmigration of monocytes across the BEC monolayer cultivated in a Transwell chamber was increased 2.5-fold when Abeta was added to the basolateral side of AD compared with normal individual BEC. The Abeta-induced transmigration of monocytes was inhibited in both normal and AD-BEC by antibodies to the putative Abeta receptor, receptor for advanced glycation end products (RAGE), and to the endothelial cell junction molecule, platelet-endothelial cell adhesion molecule-1 (PECAM-1). We conclude that interaction of Abeta with the basolateral surface of AD-BEC induces cellular signaling, promoting transmigration of monocytes from the apical to basolateral direction. We suggest that Abeta in the AD brain parenchyma or cerebrovasculature initiates cellular signaling that induces PBM to transmigrate across the BBB and accumulate in the brain.  相似文献   
162.
We have isolated the entire coding sequence of human FRAT2 (frequently rearranged in advanced T-cell lymphomas-2). It exhibits appreciable amino acid identity to FRAT1 (77%) which was initially isolated as frequently being overexpressed in a murine leukemia virus insertion model in murine tumors. FRAT proteins are thought to play a role in Wnt signaling. They can bind to glycogen synthase kinase-3 (GSK-3) and Dishevelled, two proteins involved in Wnt signal transduction. Both hFRAT1 and hFRAT2 are intronless genes localized to the same portion of chromosome 10q24.1 and separated by only 10.7 kb. In a broad range of human tissues FRAT1 and FRAT2 are readily detected and expressed in a near identical pattern. Both species are repressed when the human embryonal carcinoma cell line, NT2/D1, is induced to differentiate with all-trans retinoic acid (RA). This treatment had no appreciable effect on FRAT levels in two other RA-sensitive cell lines that were not of germ cell tumor origin. The overlapping expression patterns suggest these two genes share a regulatory region. Both FRAT genes exhibited three species of mRNA, which varied in representation between tissues. When transiently overexpressed in COS-1 cells, the FRAT proteins were detected in the cytosol and concentrated in the nucleus. Both hFRAT1 and hFRAT2 are implicated in the selective modulation of GSK-3 activity via the Wnt signaling pathway. This study provides a foundation from which to examine the role these proteins play in Wnt-dependent and -independent processes.  相似文献   
163.
The reaction of demethylation mediated by cytochrome P450 (CYP) leads to the equimolar production of demethylated metabolite and formaldehyde. From a 13C-substrate labeled on a carbon of the methyl moiety, [13C]formaldehyde (H13CHO) is liberated. A highly sensitive and specific assay involving the oxidation of H13CHO to 13CO(2) by a double-enzymatic-step reaction is reported. The 13CO(2) was quantified by the method of reverse isotopic dilution based on gas chromatography-isotope ratio mass spectrometry analysis. The method first involves the limiting step of the CYP-dependent reaction, which is stopped with a mixture of zinc sulfate 5 mM and trichloroacetic acid 100 mM. Then, the transformation of H13CHO to 13CO(2) is performed with the formaldehyde (0.2 unit) and the formate (0.2 unit) dehydrogenase NAD-dependent enzymes. The recovery of 13CO(2) from the incubation mixture was equal to 91.4 +/- 3.0%. The accuracy and the precision of the present method were within 12 and 10%, respectively. The limit of quantification was set to 25 pmol. The performance of the assay was validated on human liver microsomes with five probes: [13C]erythromycin, [1-13C]caffeine, [3-13C]caffeine, [7-13C]caffeine, and [13C(2)]aminopyrine. This method is useful for the rapid determination of N-demethylase activity of human liver microsomes from methyl-13C-substrates.  相似文献   
164.
A method to characterize plant cell wall polysaccharides is presented. The complexity of the polymer structures and the large number of different charged and uncharged monosaccharides that make up plant polysaccharides have previously made analysis technically demanding and laborious. Polysaccharide analysis using carbohydrate gel electrophoresis (PACE) relies on derivatization of reducing ends of sugars and oligosaccharides with a fluorophore, followed by electrophoresis under optimized conditions in polyacrylamide gels. We show that PACE is a sensitive and simple tool for studying the monosaccharide composition of polysaccharides and of cell wall preparations. In combination with specific hydrolases, it can be used to analyze the structure of polysaccharides. Moreover, the specificity and kinetics of the plant polysaccharide hydrolases themselves can be quickly and effectively studied. PACE can detect as little as 500 fmol of monosaccharides and 100 fmol of oligosaccharides, and it is fast and quantitative.  相似文献   
165.
We reported previously (Cayabyab, F. S., and Schlichter, L. C. (2002) J. Biol. Chem. 277, 13673-13681) a functional interaction between the ERG-1 K(+) channel and Src tyrosine kinase, which increased the current. We now show that the tyrosine phosphatase, SHP-1, which is present in microglia, is increased after brain damage, and is activated by colony-stimulating factor-1, associates with ERG-1 and regulates the current. Patch clamp recordings from the MLS-9 microglia cells were made with pipette solutions containing a recombinant SHP-1 protein: wild type (SHP-1 wild type (wt)), catalytically active (SHP-1 S6), or the substrate-trapping mutant (SHP-1 Cys --> Ser). SHP-1 wt and SHP-1 S6 proteins decreased the current, an effect that was reversed by the phosphatase inhibitor, pervanadate, whereas SHP-1 Cys --> Ser increased the current. Moreover, transient transfection with cDNA for SHP-1 wt or SHP-1 S6 decreased the ERG current without decreasing the protein level. Tyrosine phosphorylation of ERG-1 was decreased by transfection with SHP-1 wt and increased by SHP-1 Cys --> Ser. The decrease in current by active SHP-1 was partly attributed to changes in the voltage dependence of activation and steady-state conductance, whereas inactivation kinetics and voltage dependence were not affected. Our results show that ERG-1 is a SHP-1 substrate constituting the first report that an ion current is regulated by SHP-1.  相似文献   
166.
Long-chain hydroxy acid oxydase (HAO) is a member of a flavoenzyme family with significant amino acid sequence similarity and strongly conserved three-dimensional structure; in particular, active-site amino acids involved in catalysis are invariant, with one exception, and numerous enzymatic studies suggest an identical chemical mechanism involving an intermediate carbanion for all family members. Known physiological substrates are a variety of L-2-hydroxy acids. Peroxisomal HAO differs from the other family members in that its actual physiological substrate is not known; it was first described as an L-amino acid oxidase, and recently was identified as an enzyme that converts creatol (hydroxycreatinine) to methylguanidine (a metabolite involved in a variety of uremic syndromes). Creatol (2-amino-5-hydroxy-1-methyl-4(5H)imidazolone) is not a 2-hydroxy acid. We show in this work that 2-hydroxyphenyl acetohydroxamate (HYPAH, the hydroxamate of mandelic acid), a compound that bears similarity both to mandelate (one of the best substrates known) and to creatol, is turned over by HAO, but between 10- and 100-fold less efficiently than mandelate itself. The compound also binds to the active site of homologous flavocytochrome b(2) (L-lactate dehydrogenase). Comparative pH-rate studies for mandelate and its hydroxamate suggest that HYPAH may bind in its ionized form. Both pH-rate profiles are bell-shaped curves, as are those determined for two other family members, flavocytochrome b(2) and mandelate dehydrogenase; while the group with an acid pK(a) between 5 and 6 is most likely the active-site histidine (the residue which abstracts the substrate C2 proton), the identity of the basic group is less clear. It has been proposed to be one of the active site arginines (Lehoux, I., and Mitra, B. (1999) Biochemistry38, 5836-5848); we suggest as an alternative that it could be the lysine residue that interacts with the flavin N1 and O2 positions and stabilizes the negative charge of reduced flavin. In addition to these studies, we have found that HAO is competitively inhibited by benzohydroxamate, which is one atom shorter than HYPAH; its affinity is nearly 100-fold lower than that of the substrate, in contrast to the strong inhibition it exerts on mandelate racemase (Maurice, St. M., and Bearne, S. L. (2000) Biochemistry39, 13324-13335). In the latter case, the 100-fold higher affinity compared to mandelate was proposed to arise from the fact that the hydroxamate can mimic the enolic intermediate which lies on the reaction pathway after C2 proton abstraction. Thus our results do not support the existence of a similar enolic intermediate for HAO (and probably its homologues), although they do not disprove it.  相似文献   
167.
Among HLA-DP specificities, HLA-DP4 specificity involves at least two molecules, HLA-DPA1*0103/DPB1*0401 (DP401) and HLA-DPA1*0103/DPB1*0402 (DP402), which differ from each other by only three residues. Together, they are present worldwide at an allelic frequency of 20-60% and are the most abundant human HLA II alleles. Strikingly, the peptide-binding specificities of these molecules have never been investigated. Hence, in this study, we report the peptide-binding motifs of both molecules. We first set up a binding assay specific for the immunopurified HLA-DP4 molecules. Using multiple sets of synthetic peptides, we successfully defined the amino acid preferences of the anchor residues. With these assays, we were also able to identify new peptide ligands from allergens and viral and tumor Ags. DP401 and DP402 exhibit very similar patterns of recognition in agreement with molecular modeling of the complexes. Pockets P1 and P6 accommodate the main anchor residues and interestingly contain only two polymorphic residues, beta86 and beta11, respectively. Both positions are almost dimorphic and thus produce a limited number of pocket combinations. Taken together, our results support the existence of three main binding supertypes among HLA-DP molecules and should significantly contribute to the identification of universal epitopes to be used in peptide-based vaccines for cancer, as well as for allergic or infectious diseases.  相似文献   
168.
To study survival under prolonged and severe drought in the perennial grass Dactylis glomerata we compared dormant, resistant and sensitive cultivars (cvs.) in both field and glasshouse experiments. Water status, membrane stability and expression of dehydrins were assessed in the immature leaf bases, which are the last surviving organs. Analysis of leaf elongation and senescence of aerial tissues showed that dormancy was exhibited by the potentially dormant cultivar (cv.) only in the field. This cultivar exhibited a high survival rate, similar levels of dehydration and expression of a low-molecular weight (22–24 kDa) dehydrin in both drought and irrigated plants, whether fully dormant or not. At the same level of soil water deficit, there were no differences between the non-dormant drought resistant and drought sensitive cultivars in plant water status and membrane stability. However, the accumulation of dehydrins as drought progressed was markedly different between these cultivars and was associated with their contrasting survival. The possible role of the major low-molecular dehydrins in maintenance of cell integrity under dehydration is discussed with reference to both summer dormancy and survival under severe drought.  相似文献   
169.
170.
Domains required late in the virus budding process (L domains) have been identified in the Gag proteins of a number of retroviruses. Here we show that the human T-cell leukemia virus type 1 candidate L domain motif PPPY is indeed required for virus production. Strikingly, however, mutation of this motif arrested virus particles at an earlier stage in the budding process than was seen for mutation of the L domain motifs thus far described for retroviruses. In view of the exchangeability of such domains, we propose that the retrovirus budding process may involve a continuum from bud formation to membrane fission.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号